Multimodal-OCR2 / app.py
prithivMLmods's picture
Update app.py
25a44d8 verified
raw
history blame
14.5 kB
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2_5_VLForConditionalGeneration,
AutoModelForCausalLM,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
# These imports seem to be from a custom library.
# If you have 'docling_core' installed, you can uncomment them.
# from docling_core.types.doc import DoclingDocument, DocTagsDocument
import re
import ast
import html
# Constants for text generation
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Model Loading ---
# Load Nanonets-OCR-s
MODEL_ID_M = "nanonets/Nanonets-OCR-s"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load MonkeyOCR
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Load Typhoon-OCR-7B
MODEL_ID_L = "scb10x/typhoon-ocr-7b"
processor_l = AutoProcessor.from_pretrained(MODEL_ID_L, trust_remote_code=True)
model_l = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_L,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load SmolDocling-256M-preview
MODEL_ID_X = "ds4sd/SmolDocling-256M-preview"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = AutoModelForVision2Seq.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Thyme-RL
MODEL_ID_N = "Kwai-Keye/Thyme-RL"
processor_n = AutoProcessor.from_pretrained(MODEL_ID_N, trust_remote_code=True)
model_n = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_N,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# --- Preprocessing and Helper Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0)) # Top-left corner
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded_image
def normalize_values(text, target_max=500):
"""Normalize numerical values in text to a target maximum."""
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
pattern = r"\[([\d\.\s,]+)\]"
normalized_text = re.sub(pattern, process_match, text)
return normalized_text
def downsample_video(video_path):
"""Downsample a video to evenly spaced frames, returning PIL images with timestamps."""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Use 10 frames for video processing
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# A placeholder function in case docling_core is not installed
def format_smoldocling_output(buffer_text, images):
cleaned_output = buffer_text.replace("<end_of_utterance>", "").strip()
# Check if docling_core is available and was imported
if 'DocTagsDocument' in globals() and 'DoclingDocument' in globals():
if any(tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
return buffer_text, markdown_output
# Fallback if library is not available or tags are not present
return buffer_text, cleaned_output
# --- Core Generation Logic ---
def get_model_and_processor(model_name):
"""Helper to select model and processor."""
if model_name == "Nanonets-OCR-s":
return processor_m, model_m
elif model_name == "MonkeyOCR-Recognition":
return processor_g, model_g
elif model_name == "SmolDocling-256M-preview":
return processor_x, model_x
elif model_name == "Typhoon-OCR-7B":
return processor_l, model_l
elif model_name == "Thyme-RL":
return processor_n, model_n
else:
return None, None
@spaces.GPU
def generate_response(model_name: str, text: str, media_input, media_type: str,
max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float):
"""Unified generation function for both image and video."""
processor, model = get_model_and_processor(model_name)
if not processor or not model:
yield "Invalid model selected.", "Invalid model selected."
return
if media_input is None:
yield f"Please upload a {media_type}.", f"Please upload a {media_type}."
return
if media_type == "video":
frames = downsample_video(media_input)
images = [frame for frame, _ in frames]
else: # image
images = [media_input]
if model_name == "SmolDocling-256M-preview":
if "OTSL" in text or "code" in text:
images = [add_random_padding(img) for img in images]
if "OCR at text at" in text or "Identify element" in text or "formula" in text:
text = normalize_values(text, target_max=500)
messages = [
{"role": "user", "content": [{"type": "image"} for _ in images] + [{"type": "text", "text": text}]}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, buffer
if model_name == "SmolDocling-256M-preview":
raw_output, formatted_output = format_smoldocling_output(buffer, images)
yield raw_output, formatted_output
else:
# For other models, the formatted output is just the cleaned buffer
yield buffer, buffer.strip()
def generate_image_wrapper(*args):
yield from generate_response(*args, media_type="image")
def generate_video_wrapper(*args):
yield from generate_response(*args, media_type="video")
# --- Examples ---
image_examples = [
["Reconstruct the doc [table] as it is.", "images/0.png"],
["Describe the image!", "images/8.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/1.png"],
["Convert this page to docling", "images/3.png"],
["Convert chart to OTSL.", "images/4.png"],
["Convert code to text", "images/5.jpg"],
["Convert this table to OTSL.", "images/6.jpg"],
["Convert formula to latex.", "images/7.jpg"],
]
video_examples = [
["Explain the video in detail.", "videos/1.mp4"],
["Explain the video in detail.", "videos/2.mp4"]
]
# --- UI Styling ---
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
border: none !important;
box-shadow: 2px 2px 5px rgba(0,0,0,0.2) !important;
}
.submit-btn:hover {
background-color: #3498db !important;
box-shadow: 2px 2px 8px rgba(0,0,0,0.3) !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
background-color: #f0f8ff;
}
"""
# --- Gradio Interface ---
with gr.Blocks(css=css) as demo:
gr.Markdown("# **[Multimodal OCR2](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
# Left Column for Inputs and Controls
with gr.Column(scale=1):
with gr.Tabs():
with gr.TabItem("🖼️ Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=300)
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload],
label="Image Examples"
)
image_submit = gr.Button("Submit", elem_classes="submit-btn")
with gr.TabItem("🎥 Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Upload Video", height=300)
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload],
label="Video Examples"
)
video_submit = gr.Button("Submit", elem_classes="submit-btn")
with gr.Accordion("⚙️ Advanced Options", open=False):
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
# Right Column for Outputs and Model Info
with gr.Column(scale=1):
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
raw_output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=5)
with gr.Accordion("📄 Formatted Result (Result.md)", open=True):
formatted_output = gr.Markdown(label="Formatted Output")
model_choice = gr.Radio(
choices=["Nanonets-OCR-s", "MonkeyOCR-Recognition", "Thyme-RL", "Typhoon-OCR-7B", "SmolDocling-256M-preview"],
label="🤖 Select Model",
value="Nanonets-OCR-s"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)")
gr.Markdown("> **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: A powerful, state-of-the-art image-to-markdown OCR model that transforms documents into structured markdown with intelligent content recognition.")
gr.Markdown("> **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: A multimodal Image-Text-to-Text model designed for efficient document conversion, retaining key features of the larger Docling model.")
gr.Markdown("> **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation (SRR) paradigm, simplifying the pipeline for document processing.")
gr.Markdown("> **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual document parsing model for real-world documents in Thai and English, capable of extracting text from images and charts.")
gr.Markdown("> **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Thyme transcends traditional 'thinking with images' by autonomously generating and executing code for image processing and computation, enhancing performance on complex reasoning tasks.")
gr.Markdown("> ⚠️ **Note**: All models in this space are primarily optimized for image tasks and may not perform as well on video inference use cases.")
# --- Event Handlers ---
common_inputs = [model_choice, max_new_tokens, temperature, top_p, top_k, repetition_penalty]
common_outputs = [raw_output, formatted_output]
image_submit.click(
fn=generate_image_wrapper,
inputs=[image_query, image_upload] + common_inputs,
outputs=common_outputs
)
video_submit.click(
fn=generate_video_wrapper,
inputs=[video_query, video_upload] + common_inputs,
outputs=common_outputs
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, show_error=True)