Multimodal-OCR2 / app.py
prithivMLmods's picture
Update app.py
f5e1158 verified
raw
history blame
13.3 kB
import os
import random
import re
import ast
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image, ImageOps
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from docling_core.types.doc import DoclingDocument, DocTagsDocument
# --- Constants ---
MAX_MAX_NEW_TOKENS = 5120
DEFAULT_MAX_NEW_TOKENS = 3072
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Model Loading ---
def load_model(model_id, model_class, subfolder=None):
"""Generic function to load a model and its processor."""
processor_kwargs = {"trust_remote_code": True}
model_kwargs = {"trust_remote_code": True, "torch_dtype": torch.float16}
if subfolder:
processor_kwargs["subfolder"] = subfolder
model_kwargs["subfolder"] = subfolder
processor = AutoProcessor.from_pretrained(model_id, **processor_kwargs)
model = model_class.from_pretrained(model_id, **model_kwargs).to(DEVICE).eval()
return processor, model
# Load Nanonets-OCR-s
processor_m, model_m = load_model(
"nanonets/Nanonets-OCR-s", Qwen2_5_VLForConditionalGeneration
)
# Load MonkeyOCR
processor_g, model_g = load_model(
"echo840/MonkeyOCR", Qwen2_5_VLForConditionalGeneration, subfolder="Recognition"
)
# Load Typhoon-OCR-7B
processor_l, model_l = load_model(
"scb10x/typhoon-ocr-7b", Qwen2_5_VLForConditionalGeneration
)
# Load SmolDocling-256M-preview
processor_x, model_x = load_model(
"ds4sd/SmolDocling-256M-preview", AutoModelForVision2Seq
)
# Thyme-RL
processor_n, model_n = load_model(
"Kwai-Keye/Thyme-RL", Qwen2_5_VLForConditionalGeneration
)
MODEL_MAPPING = {
"Nanonets-OCR-s": (processor_m, model_m),
"MonkeyOCR-Recognition": (processor_g, model_g),
"Typhoon-OCR-7B": (processor_l, model_l),
"SmolDocling-256M-preview": (processor_x, model_x),
"Thyme-RL": (processor_n, model_n),
}
# --- Preprocessing Functions ---
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
"""Add random padding to an image based on its size."""
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0))
padded_image = ImageOps.expand(
image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel
)
return padded_image
def normalize_values(text, target_max=500):
"""Normalize numerical values in text to a target maximum for SmolDocling."""
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
try:
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
except (ValueError, SyntaxError):
return match.group(0)
pattern = r"\[([\d\.\s,]+)\]"
return re.sub(pattern, process_match, text)
def downsample_video(video_path, num_frames=10):
"""Downsample a video to evenly spaced frames, returning PIL images."""
if not video_path:
return []
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(image_rgb))
vidcap.release()
return frames
# --- Core Generation Logic ---
def _generate_response(model_name, text, images, max_new_tokens, temperature, top_p, top_k, repetition_penalty):
"""Helper function to handle model inference."""
if not images:
yield "Please upload an image or video.", ""
return
try:
processor, model = MODEL_MAPPING[model_name]
except KeyError:
yield "Invalid model selected.", ""
return
# Model-specific preprocessing
if model_name == "SmolDocling-256M-preview":
if any(keyword in text for keyword in ["OTSL", "code"]):
images = [add_random_padding(img) for img in images]
if any(keyword in text for keyword in ["OCR at text at", "Identify element", "formula"]):
text = normalize_values(text, target_max=500)
messages = [
{
"role": "user",
"content": [{"type": "image"}] * len(images) + [{"type": "text", "text": text}],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=images, return_tensors="pt").to(DEVICE)
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text.replace("<|im_end|>", "")
yield buffer, buffer
# Model-specific post-processing
if model_name == "SmolDocling-256M-preview":
cleaned_output = buffer.replace("<end_of_utterance>", "").strip()
is_doc_tag = any(
tag in cleaned_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]
)
if is_doc_tag:
if "<chart>" in cleaned_output:
cleaned_output = cleaned_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
cleaned_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', cleaned_output)
try:
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([cleaned_output], images)
doc = DoclingDocument.load_from_doctags(doctags_doc, document_name="Document")
markdown_output = doc.export_to_markdown()
yield buffer, markdown_output
except Exception as e:
yield buffer, f"Error processing Docling output: {e}"
else:
yield buffer, cleaned_output
@spaces.GPU
def generate_for_image(model_name, text, image, *args):
"""Generate responses for a single image input."""
if image is None:
yield "Please upload an image.", ""
return
yield from _generate_response(model_name, text, [image], *args)
@spaces.GPU
def generate_for_video(model_name, text, video_path, *args):
"""Generate responses for video input by downsampling frames."""
if video_path is None:
yield "Please upload a video.", ""
return
frames = downsample_video(video_path)
if not frames:
yield "Could not process video. Please check the file.", ""
return
yield from _generate_response(model_name, text, frames, *args)
# --- Gradio Interface ---
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
font-weight: bold !important;
border: none !important;
transition: background-color 0.3s ease;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.output-container {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
height: 100%;
}
"""
# Define examples
image_examples = [
["Reconstruct the doc [table] as it is.", "images/0.png"],
["Describe the image!", "images/8.png"],
["OCR the image", "images/2.jpg"],
["Convert this page to docling", "images/1.png"],
["Convert this page to docling", "images/3.png"],
["Convert chart to OTSL.", "images/4.png"],
["Convert code to text", "images/5.jpg"],
["Convert this table to OTSL.", "images/6.jpg"],
["Convert formula to latex.", "images/7.jpg"],
]
video_examples = [
["Explain the video in detail.", "videos/1.mp4"],
["Explain the video in detail.", "videos/2.mp4"],
]
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Multimodal OCR²](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
gr.Markdown("A unified interface for state-of-the-art multimodal and document AI models. Select a model, upload an image or video, and enter a query to begin.")
with gr.Row():
# --- LEFT COLUMN (INPUTS) ---
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=[
"Nanonets-OCR-s",
"MonkeyOCR-Recognition",
"Thyme-RL",
"Typhoon-OCR-7B",
"SmolDocling-256M-preview",
],
label="🤖 Select Model",
value="Nanonets-OCR-s",
)
with gr.Tabs():
with gr.TabItem("🖼️ Image Inference"):
image_query = gr.Textbox(label="Query", placeholder="e.g., 'OCR the document'")
image_upload = gr.Image(type="pil", label="Upload Image")
image_submit = gr.Button("Generate", elem_classes="submit-btn")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("🎬 Video Inference"):
video_query = gr.Textbox(label="Query", placeholder="e.g., 'What is happening in this video?'")
video_upload = gr.Video(label="Upload Video")
video_submit = gr.Button("Generate", elem_classes="submit-btn")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.Accordion("⚙️ Advanced Options", open=False):
max_new_tokens = gr.Slider(
label="Max New Tokens", min=1, max=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS
)
temperature = gr.Slider(
label="Temperature", min=0.1, max=2.0, step=0.1, value=0.6
)
top_p = gr.Slider(
label="Top-P", min=0.05, max=1.0, step=0.05, value=0.9
)
top_k = gr.Slider(label="Top-K", min=1, max=1000, step=1, value=50)
repetition_penalty = gr.Slider(
label="Repetition Penalty", min=1.0, max=2.0, step=0.05, value=1.2
)
advanced_params = [max_new_tokens, temperature, top_p, top_k, repetition_penalty]
# --- RIGHT COLUMN (OUTPUTS & INFO) ---
with gr.Column(scale=2):
with gr.Column(elem_classes="output-container"):
gr.Markdown("## Output")
raw_output = gr.Textbox(
label="Raw Output Stream", interactive=False, lines=8
)
formatted_output = gr.Markdown(label="Formatted Result (Markdown)")
with gr.Accordion("💻 Model Information", open=True):
gr.Markdown(
"""
- **[Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s)**: Transforms documents into structured markdown with intelligent content recognition.
- **[SmolDocling-256M](https://huggingface.co/ds4sd/SmolDocling-256M-preview)**: An efficient multimodal model for converting documents to structured formats.
- **[MonkeyOCR-Recognition](https://huggingface.co/echo840/MonkeyOCR)**: Adopts a Structure-Recognition-Relation paradigm for efficient document processing.
- **[Typhoon-OCR-7B](https://huggingface.co/scb10x/typhoon-ocr-7b)**: A bilingual (Thai/English) document parsing model for real-world documents.
- **[Thyme-RL](https://huggingface.co/Kwai-Keye/Thyme-RL)**: Generates and executes code for image processing and complex reasoning tasks.
---
> ⚠️ **Note**: Performance on video inference tasks is experimental and may vary between models.
> [Report a Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR2/discussions)
"""
)
# --- Event Handlers ---
image_submit.click(
fn=generate_for_image,
inputs=[model_choice, image_query, image_upload] + advanced_params,
outputs=[raw_output, formatted_output],
)
video_submit.click(
fn=generate_for_video,
inputs=[model_choice, video_query, video_upload] + advanced_params,
outputs=[raw_output, formatted_output],
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(share=True, show_error=True)