Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,255 Bytes
a0a9007 a8b1c40 a0a9007 ab0c591 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 ab0c591 a0a9007 a8b1c40 09dd649 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a5d07a8 7c0a5ab a0a9007 7c0a5ab cae2745 a0a9007 e695261 a0a9007 323e41c a0a9007 323e41c a0a9007 323e41c a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 323e41c a0a9007 a8b1c40 a0a9007 ab0c591 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 c947ff2 a8b1c40 a0a9007 466e3e5 a0a9007 d418457 a0a9007 a8b1c40 a0a9007 a8b1c40 a0a9007 c947ff2 ab0c591 a0a9007 ab0c591 a0a9007 ab0c591 a0a9007 09dd649 a8b1c40 a0a9007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple, Union
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile
import gradio as gr
import requests
import torch
from PIL import Image
import fitz
import numpy as np
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoTokenizer,
)
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch
# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Model Loading ---
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_D = "prithivMLmods/DeepCaption-VLA-7B"
processor_d = AutoProcessor.from_pretrained(MODEL_ID_D, trust_remote_code=True)
model_d = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_D, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
# --- Video and PDF Utility Functions ---
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is returned as a PIL image.
"""
try:
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
# Ensure we don't try to sample more frames than exist
num_frames_to_sample = min(10, total_frames)
if num_frames_to_sample == 0:
vidcap.release()
return []
frame_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
frames.append(pil_image)
vidcap.release()
return frames
except Exception as e:
print(f"Error processing video: {e}")
return []
def generate_and_preview_pdf(media_input: Union[str, Image.Image], text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str, state_media_type: str, state_frames: list):
"""
Generates a PDF from an image or video frames, saves it, and creates image previews.
Returns the path to the PDF and a list of paths to the preview images.
"""
if (media_input is None and not state_frames) or not text_content or not text_content.strip():
raise gr.Error("Cannot generate PDF. Media input or text content is missing.")
images_to_process = []
if state_media_type == "video":
images_to_process = [Image.fromarray(frame) for frame in state_frames] # Assuming state_frames are numpy arrays
elif isinstance(media_input, Image.Image):
images_to_process = [media_input]
if not images_to_process:
raise gr.Error("No images found to generate PDF.")
# --- 1. Generate the PDF ---
temp_dir = tempfile.gettempdir()
pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
doc = SimpleDocTemplate(
pdf_filename,
pagesize=A4,
rightMargin=inch, leftMargin=inch,
topMargin=inch, bottomMargin=inch
)
styles = getSampleStyleSheet()
style_normal = styles["Normal"]
style_normal.fontSize = int(font_size)
style_normal.leading = int(font_size) * line_spacing
style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]
story = []
page_width, _ = A4
available_width = page_width - 2 * inch
image_widths = {
"Small": available_width * 0.3,
"Medium": available_width * 0.6,
"Large": available_width * 0.9,
}
img_width = image_widths[image_size]
for image in images_to_process:
img_buffer = BytesIO()
image.save(img_buffer, format='PNG')
img_buffer.seek(0)
img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
story.append(img)
story.append(Spacer(1, 6)) # Add a smaller spacer between frames
story.append(Spacer(1, 12))
cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
text_paragraphs = cleaned_text.split('\n')
for para in text_paragraphs:
if para.strip():
story.append(Paragraph(para, style_normal))
doc.build(story)
# --- 2. Render PDF pages as images for preview ---
preview_images = []
try:
pdf_doc = fitz.open(pdf_filename)
for page_num in range(len(pdf_doc)):
page = pdf_doc.load_page(page_num)
pix = page.get_pixmap(dpi=150)
preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
pix.save(preview_img_path)
preview_images.append(preview_img_path)
pdf_doc.close()
except Exception as e:
print(f"Error generating PDF preview: {e}")
return pdf_filename, preview_images
# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(
model_name: str,
media_input: Union[str, Image.Image],
prompt_input: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float
):
"""
Main generator function that handles model inference for images or videos.
Also returns the type of media and extracted frames for state management.
"""
if media_input is None:
yield "Please upload an image or video.", "", "none", []
return
if not prompt_input or not prompt_input.strip():
yield "Please enter a prompt.", "", "none", []
return
# --- Model Selection ---
if model_name == "Qwen2.5-VL-7B-Instruct": processor, model = processor_m, model_m
elif model_name == "Qwen2.5-VL-3B-Instruct": processor, model = processor_x, model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it": processor, model = processor_q, model_q
elif model_name == "DeepCaption-VLA-7B": processor, model = processor_d, model_d
else:
yield "Invalid model selected.", "", "none", []
return
media_type = "none"
saved_frames = []
# --- Input Processing (Image vs. Video) ---
if isinstance(media_input, str): # It's a video file path
media_type = "video"
frames = downsample_video(media_input)
if not frames:
yield "Could not process video file.", "", "none", []
return
# Convert PIL images to numpy arrays for state to avoid serialization issues
saved_frames = [np.array(f) for f in frames]
messages = [{"role": "user", "content": [{"type": "text", "text": prompt_input}]}]
for frame in frames:
messages[0]["content"].append({"type": "image", "image": frame})
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
elif isinstance(media_input, Image.Image): # It's an image
media_type = "image"
messages = [{"role": "user", "content": [{"type": "image", "image": media_input}, {"type": "text", "text": prompt_input}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=[media_input], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
else:
yield "Invalid input type.", "", "none", []
return
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"do_sample": True if temperature > 0 else False
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer, media_type, saved_frames
yield buffer, buffer, media_type, saved_frames
# --- Gradio UI Definition ---
def create_gradio_interface():
"""Builds and returns the Gradio web interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
#gallery { min-height: 400px; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
# Hidden state variables to store media type and frames
state_media_type = gr.State("none")
state_frames = gr.State([])
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Qwen2.5-VL Outpost outpost</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced Vision-Language Models for Image and Video Understanding
</p>
</div>
""")
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=[
"Qwen2.5-VL-7B-Instruct",
"Qwen2.5-VL-3B-Instruct",
"Qwen2.5-VL-7B-Abliterated-Caption-it",
"DeepCaption-VLA-7B"
],
label="Select Model",
value="Qwen/Qwen2.5-VL-7B-Instruct"
)
prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your prompt")
media_input = gr.File(label="Upload Image or Video", type="filepath")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=512, maximum=4096, value=2048, step=256, label="Max New Tokens")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
gr.Markdown("### PDF Export Settings")
font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
process_btn = gr.Button("🚀 Process Media", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
# Right Column (Outputs)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.Tab("📝 Extracted Content"):
raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
with gr.Row():
examples = gr.Examples(
examples=["examples/A.jpg", "examples/2.jpg", "examples/1.jpg", "examples/1.mp4", "examples/2.mp4"],
inputs=image_input, label="Examples"
)
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
with gr.Tab("📰 README.md"):
with gr.Accordion("(Result.md)", open=True):
markdown_output = gr.Markdown()
with gr.Tab("📋 PDF Preview"):
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")
# --- Helper function to handle media input ---
def get_media_input(filepath):
if filepath is None:
return None
# Simple check for common image/video extensions
if filepath.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp')):
return Image.open(filepath)
elif filepath.lower().endswith(('.mp4', '.mov', '.avi', '.mkv')):
return filepath # Return path for video
return None # Unsupported file type
# --- Event Handlers ---
def clear_all_outputs():
return None, "", "Raw output will appear here.", "", None, None, "none", []
process_btn.click(
fn=lambda *args: process_document_stream(*args),
inputs=[model_choice, media_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[raw_output_stream, markdown_output, state_media_type, state_frames]
)
generate_pdf_btn.click(
fn=generate_and_preview_pdf,
inputs=[media_input, raw_output_stream, font_size, line_spacing, alignment, image_size, state_media_type, state_frames],
outputs=[pdf_output_file, pdf_preview_gallery]
)
clear_btn.click(
clear_all_outputs,
outputs=[media_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery, state_media_type, state_frames]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True) |