File size: 16,255 Bytes
a0a9007
a8b1c40
a0a9007
 
 
 
 
 
ab0c591
a8b1c40
a0a9007
 
 
a8b1c40
 
a0a9007
a8b1c40
ab0c591
a0a9007
 
a8b1c40
09dd649
a0a9007
a8b1c40
 
 
 
a0a9007
a8b1c40
 
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b1c40
 
a0a9007
a8b1c40
 
 
a0a9007
a8b1c40
 
 
 
 
a0a9007
a8b1c40
a5d07a8
7c0a5ab
 
 
a0a9007
7c0a5ab
 
cae2745
 
 
a0a9007
e695261
 
a0a9007
 
323e41c
 
a0a9007
 
323e41c
a0a9007
 
 
 
 
 
 
 
 
323e41c
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b1c40
a0a9007
 
a8b1c40
a0a9007
 
323e41c
a0a9007
 
 
 
 
a8b1c40
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0c591
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8b1c40
a0a9007
 
 
 
 
 
 
 
 
 
a8b1c40
a0a9007
 
a8b1c40
a0a9007
 
 
 
 
 
 
 
 
 
 
 
a8b1c40
a0a9007
c947ff2
a8b1c40
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466e3e5
 
a0a9007
d418457
a0a9007
a8b1c40
 
 
 
 
 
 
 
a0a9007
a8b1c40
a0a9007
c947ff2
ab0c591
a0a9007
ab0c591
 
 
a0a9007
ab0c591
a0a9007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dd649
a8b1c40
a0a9007
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple, Union
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile

import gradio as gr
import requests
import torch
from PIL import Image
import fitz
import numpy as np
import cv2


from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
    AutoTokenizer,
)

from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch

# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)


# --- Model Loading ---
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()

MODEL_ID_D = "prithivMLmods/DeepCaption-VLA-7B"
processor_d = AutoProcessor.from_pretrained(MODEL_ID_D, trust_remote_code=True)
model_d = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_D, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()


# --- Video and PDF Utility Functions ---
def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is returned as a PIL image.
    """
    try:
        vidcap = cv2.VideoCapture(video_path)
        total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
        frames = []
        # Ensure we don't try to sample more frames than exist
        num_frames_to_sample = min(10, total_frames)
        if num_frames_to_sample == 0:
            vidcap.release()
            return []

        frame_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)

        for i in frame_indices:
            vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
            success, image = vidcap.read()
            if success:
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
                pil_image = Image.fromarray(image)
                frames.append(pil_image)
        vidcap.release()
        return frames
    except Exception as e:
        print(f"Error processing video: {e}")
        return []

def generate_and_preview_pdf(media_input: Union[str, Image.Image], text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str, state_media_type: str, state_frames: list):
    """
    Generates a PDF from an image or video frames, saves it, and creates image previews.
    Returns the path to the PDF and a list of paths to the preview images.
    """
    if (media_input is None and not state_frames) or not text_content or not text_content.strip():
        raise gr.Error("Cannot generate PDF. Media input or text content is missing.")

    images_to_process = []
    if state_media_type == "video":
        images_to_process = [Image.fromarray(frame) for frame in state_frames] # Assuming state_frames are numpy arrays
    elif isinstance(media_input, Image.Image):
        images_to_process = [media_input]

    if not images_to_process:
         raise gr.Error("No images found to generate PDF.")

    # --- 1. Generate the PDF ---
    temp_dir = tempfile.gettempdir()
    pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
    doc = SimpleDocTemplate(
        pdf_filename,
        pagesize=A4,
        rightMargin=inch, leftMargin=inch,
        topMargin=inch, bottomMargin=inch
    )
    styles = getSampleStyleSheet()
    style_normal = styles["Normal"]
    style_normal.fontSize = int(font_size)
    style_normal.leading = int(font_size) * line_spacing
    style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]

    story = []
    page_width, _ = A4
    available_width = page_width - 2 * inch
    image_widths = {
        "Small": available_width * 0.3,
        "Medium": available_width * 0.6,
        "Large": available_width * 0.9,
    }
    img_width = image_widths[image_size]

    for image in images_to_process:
        img_buffer = BytesIO()
        image.save(img_buffer, format='PNG')
        img_buffer.seek(0)
        img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
        story.append(img)
        story.append(Spacer(1, 6)) # Add a smaller spacer between frames

    story.append(Spacer(1, 12))

    cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
    text_paragraphs = cleaned_text.split('\n')

    for para in text_paragraphs:
        if para.strip():
            story.append(Paragraph(para, style_normal))

    doc.build(story)

    # --- 2. Render PDF pages as images for preview ---
    preview_images = []
    try:
        pdf_doc = fitz.open(pdf_filename)
        for page_num in range(len(pdf_doc)):
            page = pdf_doc.load_page(page_num)
            pix = page.get_pixmap(dpi=150)
            preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
            pix.save(preview_img_path)
            preview_images.append(preview_img_path)
        pdf_doc.close()
    except Exception as e:
        print(f"Error generating PDF preview: {e}")

    return pdf_filename, preview_images


# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(
    model_name: str,
    media_input: Union[str, Image.Image],
    prompt_input: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float
):
    """
    Main generator function that handles model inference for images or videos.
    Also returns the type of media and extracted frames for state management.
    """
    if media_input is None:
        yield "Please upload an image or video.", "", "none", []
        return
    if not prompt_input or not prompt_input.strip():
        yield "Please enter a prompt.", "", "none", []
        return

    # --- Model Selection ---
    if model_name == "Qwen2.5-VL-7B-Instruct": processor, model = processor_m, model_m
    elif model_name == "Qwen2.5-VL-3B-Instruct": processor, model = processor_x, model_x
    elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it": processor, model = processor_q, model_q
    elif model_name == "DeepCaption-VLA-7B": processor, model = processor_d, model_d
    else:
        yield "Invalid model selected.", "", "none", []
        return

    media_type = "none"
    saved_frames = []

    # --- Input Processing (Image vs. Video) ---
    if isinstance(media_input, str): # It's a video file path
        media_type = "video"
        frames = downsample_video(media_input)
        if not frames:
            yield "Could not process video file.", "", "none", []
            return
        # Convert PIL images to numpy arrays for state to avoid serialization issues
        saved_frames = [np.array(f) for f in frames]
        messages = [{"role": "user", "content": [{"type": "text", "text": prompt_input}]}]
        for frame in frames:
            messages[0]["content"].append({"type": "image", "image": frame})
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)

    elif isinstance(media_input, Image.Image): # It's an image
        media_type = "image"
        messages = [{"role": "user", "content": [{"type": "image", "image": media_input}, {"type": "text", "text": prompt_input}]}]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=[media_input], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)

    else:
        yield "Invalid input type.", "", "none", []
        return


    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)

    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
        "do_sample": True if temperature > 0 else False
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer, media_type, saved_frames

    yield buffer, buffer, media_type, saved_frames


# --- Gradio UI Definition ---
def create_gradio_interface():
    """Builds and returns the Gradio web interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
    .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    #gallery { min-height: 400px; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        # Hidden state variables to store media type and frames
        state_media_type = gr.State("none")
        state_frames = gr.State([])

        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Qwen2.5-VL Outpost  outpost</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced Vision-Language Models for Image and Video Understanding
            </p>
        </div>
        """)

        with gr.Row():
            # Left Column (Inputs)
            with gr.Column(scale=1):
                model_choice = gr.Dropdown(
                    choices=[
                        "Qwen2.5-VL-7B-Instruct",
                        "Qwen2.5-VL-3B-Instruct",
                        "Qwen2.5-VL-7B-Abliterated-Caption-it",
                        "DeepCaption-VLA-7B"
                    ],
                    label="Select Model",
                    value="Qwen/Qwen2.5-VL-7B-Instruct"
                )

                prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your prompt")
                media_input = gr.File(label="Upload Image or Video", type="filepath")


                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=512, maximum=4096, value=2048, step=256, label="Max New Tokens")
                    temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.6)
                    top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                    top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50)
                    repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

                    gr.Markdown("### PDF Export Settings")
                    font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
                    line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
                    alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
                    image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")

                process_btn = gr.Button("🚀 Process Media", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("🗑️ Clear All", variant="secondary")

            # Right Column (Outputs)
            with gr.Column(scale=2):
                with gr.Tabs() as tabs:
                    with gr.Tab("📝 Extracted Content"):
                        raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
                        with gr.Row():
                             examples = gr.Examples(
                                examples=["examples/A.jpg", "examples/2.jpg", "examples/1.jpg", "examples/1.mp4", "examples/2.mp4"],
                                inputs=image_input, label="Examples"
                            )
                        gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")

                    with gr.Tab("📰 README.md"):
                        with gr.Accordion("(Result.md)", open=True):
                            markdown_output = gr.Markdown()

                    with gr.Tab("📋 PDF Preview"):
                        generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
                        pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
                        pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")

        # --- Helper function to handle media input ---
        def get_media_input(filepath):
            if filepath is None:
                return None
            # Simple check for common image/video extensions
            if filepath.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp')):
                return Image.open(filepath)
            elif filepath.lower().endswith(('.mp4', '.mov', '.avi', '.mkv')):
                return filepath # Return path for video
            return None # Unsupported file type

        # --- Event Handlers ---
        def clear_all_outputs():
            return None, "", "Raw output will appear here.", "", None, None, "none", []

        process_btn.click(
            fn=lambda *args: process_document_stream(*args),
            inputs=[model_choice, media_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
            outputs=[raw_output_stream, markdown_output, state_media_type, state_frames]
        )

        generate_pdf_btn.click(
            fn=generate_and_preview_pdf,
            inputs=[media_input, raw_output_stream, font_size, line_spacing, alignment, image_size, state_media_type, state_frames],
            outputs=[pdf_output_file, pdf_preview_gallery]
        )

        clear_btn.click(
            clear_all_outputs,
            outputs=[media_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery, state_media_type, state_frames]
        )
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)