prithivMLmods's picture
Update app.py
a0a9007 verified
raw
history blame
16.3 kB
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple, Union
import re
import time
from threading import Thread
from io import BytesIO
import uuid
import tempfile
import gradio as gr
import requests
import torch
from PIL import Image
import fitz
import numpy as np
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoTokenizer,
)
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch
# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Model Loading ---
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_Q = "prithivMLmods/Qwen2.5-VL-7B-Abliterated-Caption-it"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_Q, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_D = "prithivMLmods/DeepCaption-VLA-7B"
processor_d = AutoProcessor.from_pretrained(MODEL_ID_D, trust_remote_code=True)
model_d = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_D, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
# --- Video and PDF Utility Functions ---
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is returned as a PIL image.
"""
try:
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
# Ensure we don't try to sample more frames than exist
num_frames_to_sample = min(10, total_frames)
if num_frames_to_sample == 0:
vidcap.release()
return []
frame_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
frames.append(pil_image)
vidcap.release()
return frames
except Exception as e:
print(f"Error processing video: {e}")
return []
def generate_and_preview_pdf(media_input: Union[str, Image.Image], text_content: str, font_size: int, line_spacing: float, alignment: str, image_size: str, state_media_type: str, state_frames: list):
"""
Generates a PDF from an image or video frames, saves it, and creates image previews.
Returns the path to the PDF and a list of paths to the preview images.
"""
if (media_input is None and not state_frames) or not text_content or not text_content.strip():
raise gr.Error("Cannot generate PDF. Media input or text content is missing.")
images_to_process = []
if state_media_type == "video":
images_to_process = [Image.fromarray(frame) for frame in state_frames] # Assuming state_frames are numpy arrays
elif isinstance(media_input, Image.Image):
images_to_process = [media_input]
if not images_to_process:
raise gr.Error("No images found to generate PDF.")
# --- 1. Generate the PDF ---
temp_dir = tempfile.gettempdir()
pdf_filename = os.path.join(temp_dir, f"output_{uuid.uuid4()}.pdf")
doc = SimpleDocTemplate(
pdf_filename,
pagesize=A4,
rightMargin=inch, leftMargin=inch,
topMargin=inch, bottomMargin=inch
)
styles = getSampleStyleSheet()
style_normal = styles["Normal"]
style_normal.fontSize = int(font_size)
style_normal.leading = int(font_size) * line_spacing
style_normal.alignment = {"Left": 0, "Center": 1, "Right": 2, "Justified": 4}[alignment]
story = []
page_width, _ = A4
available_width = page_width - 2 * inch
image_widths = {
"Small": available_width * 0.3,
"Medium": available_width * 0.6,
"Large": available_width * 0.9,
}
img_width = image_widths[image_size]
for image in images_to_process:
img_buffer = BytesIO()
image.save(img_buffer, format='PNG')
img_buffer.seek(0)
img = RLImage(img_buffer, width=img_width, height=image.height * (img_width / image.width))
story.append(img)
story.append(Spacer(1, 6)) # Add a smaller spacer between frames
story.append(Spacer(1, 12))
cleaned_text = re.sub(r'#+\s*', '', text_content).replace("*", "")
text_paragraphs = cleaned_text.split('\n')
for para in text_paragraphs:
if para.strip():
story.append(Paragraph(para, style_normal))
doc.build(story)
# --- 2. Render PDF pages as images for preview ---
preview_images = []
try:
pdf_doc = fitz.open(pdf_filename)
for page_num in range(len(pdf_doc)):
page = pdf_doc.load_page(page_num)
pix = page.get_pixmap(dpi=150)
preview_img_path = os.path.join(temp_dir, f"preview_{uuid.uuid4()}_p{page_num}.png")
pix.save(preview_img_path)
preview_images.append(preview_img_path)
pdf_doc.close()
except Exception as e:
print(f"Error generating PDF preview: {e}")
return pdf_filename, preview_images
# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(
model_name: str,
media_input: Union[str, Image.Image],
prompt_input: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float
):
"""
Main generator function that handles model inference for images or videos.
Also returns the type of media and extracted frames for state management.
"""
if media_input is None:
yield "Please upload an image or video.", "", "none", []
return
if not prompt_input or not prompt_input.strip():
yield "Please enter a prompt.", "", "none", []
return
# --- Model Selection ---
if model_name == "Qwen2.5-VL-7B-Instruct": processor, model = processor_m, model_m
elif model_name == "Qwen2.5-VL-3B-Instruct": processor, model = processor_x, model_x
elif model_name == "Qwen2.5-VL-7B-Abliterated-Caption-it": processor, model = processor_q, model_q
elif model_name == "DeepCaption-VLA-7B": processor, model = processor_d, model_d
else:
yield "Invalid model selected.", "", "none", []
return
media_type = "none"
saved_frames = []
# --- Input Processing (Image vs. Video) ---
if isinstance(media_input, str): # It's a video file path
media_type = "video"
frames = downsample_video(media_input)
if not frames:
yield "Could not process video file.", "", "none", []
return
# Convert PIL images to numpy arrays for state to avoid serialization issues
saved_frames = [np.array(f) for f in frames]
messages = [{"role": "user", "content": [{"type": "text", "text": prompt_input}]}]
for frame in frames:
messages[0]["content"].append({"type": "image", "image": frame})
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=frames, return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
elif isinstance(media_input, Image.Image): # It's an image
media_type = "image"
messages = [{"role": "user", "content": [{"type": "image", "image": media_input}, {"type": "text", "text": prompt_input}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=[media_input], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
else:
yield "Invalid input type.", "", "none", []
return
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"do_sample": True if temperature > 0 else False
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer, media_type, saved_frames
yield buffer, buffer, media_type, saved_frames
# --- Gradio UI Definition ---
def create_gradio_interface():
"""Builds and returns the Gradio web interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
#gallery { min-height: 400px; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
# Hidden state variables to store media type and frames
state_media_type = gr.State("none")
state_frames = gr.State([])
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Qwen2.5-VL Outpost outpost</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced Vision-Language Models for Image and Video Understanding
</p>
</div>
""")
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=[
"Qwen2.5-VL-7B-Instruct",
"Qwen2.5-VL-3B-Instruct",
"Qwen2.5-VL-7B-Abliterated-Caption-it",
"DeepCaption-VLA-7B"
],
label="Select Model",
value="Qwen/Qwen2.5-VL-7B-Instruct"
)
prompt_input = gr.Textbox(label="Query Input", placeholder="✦︎ Enter your prompt")
media_input = gr.File(label="Upload Image or Video", type="filepath")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=512, maximum=4096, value=2048, step=256, label="Max New Tokens")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
gr.Markdown("### PDF Export Settings")
font_size = gr.Dropdown(choices=["8", "10", "12", "14", "16", "18"], value="12", label="Font Size")
line_spacing = gr.Dropdown(choices=[1.0, 1.15, 1.5, 2.0], value=1.15, label="Line Spacing")
alignment = gr.Dropdown(choices=["Left", "Center", "Right", "Justified"], value="Justified", label="Text Alignment")
image_size = gr.Dropdown(choices=["Small", "Medium", "Large"], value="Medium", label="Image Size in PDF")
process_btn = gr.Button("🚀 Process Media", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
# Right Column (Outputs)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.Tab("📝 Extracted Content"):
raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True)
with gr.Row():
examples = gr.Examples(
examples=["examples/A.jpg", "examples/2.jpg", "examples/1.jpg", "examples/1.mp4", "examples/2.mp4"],
inputs=image_input, label="Examples"
)
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL/discussions) | [prithivMLmods🤗](https://huggingface.co/prithivMLmods)")
with gr.Tab("📰 README.md"):
with gr.Accordion("(Result.md)", open=True):
markdown_output = gr.Markdown()
with gr.Tab("📋 PDF Preview"):
generate_pdf_btn = gr.Button("📄 Generate PDF & Render", variant="primary")
pdf_output_file = gr.File(label="Download Generated PDF", interactive=False)
pdf_preview_gallery = gr.Gallery(label="PDF Page Preview", show_label=True, elem_id="gallery", columns=2, object_fit="contain", height="auto")
# --- Helper function to handle media input ---
def get_media_input(filepath):
if filepath is None:
return None
# Simple check for common image/video extensions
if filepath.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif', '.webp')):
return Image.open(filepath)
elif filepath.lower().endswith(('.mp4', '.mov', '.avi', '.mkv')):
return filepath # Return path for video
return None # Unsupported file type
# --- Event Handlers ---
def clear_all_outputs():
return None, "", "Raw output will appear here.", "", None, None, "none", []
process_btn.click(
fn=lambda *args: process_document_stream(*args),
inputs=[model_choice, media_input, prompt_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[raw_output_stream, markdown_output, state_media_type, state_frames]
)
generate_pdf_btn.click(
fn=generate_and_preview_pdf,
inputs=[media_input, raw_output_stream, font_size, line_spacing, alignment, image_size, state_media_type, state_frames],
outputs=[pdf_output_file, pdf_preview_gallery]
)
clear_btn.click(
clear_all_outputs,
outputs=[media_input, prompt_input, raw_output_stream, markdown_output, pdf_output_file, pdf_preview_gallery, state_media_type, state_frames]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)