File size: 21,490 Bytes
2b1c44a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
from flask import Flask, request, jsonify, Response, send_file
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import os
import logging
import io
import numpy as np
import scipy.io.wavfile as wavfile
import soundfile as sf
from pydub import AudioSegment
import time
from functools import lru_cache
import gc
import psutil
import threading
import time
from queue import Queue
import uuid
import subprocess
import tempfile
import atexit

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

IS_HF_SPACE = os.environ.get('SPACE_ID') is not None
HF_TOKEN = os.environ.get('HF_TOKEN')

if IS_HF_SPACE: 
    device = "cpu"
    torch.set_num_threads(2)
    os.environ['TOKENIZERS_PARALLELISM'] = 'false'
    logger.info("Running on Hugging Face Spaces - CPU optimized mode")
else:
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch.set_num_threads(4)

logger.info(f"Using device: {device}")

app = Flask(__name__)
app.config['TEMP_AUDIO_DIR'] = '/tmp/audio_responses'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

stt_pipeline = None
llm_model = None
llm_tokenizer = None
tts_pipeline = None
tts_type = None

active_files = {}
file_cleanup_lock = threading.Lock()
cleanup_thread = None

def cleanup_old_files():
    while True:
        try:
            with file_cleanup_lock:
                current_time = time.time()
                files_to_remove = []
                
                for file_id, file_info in list(active_files.items()):
                    if current_time - file_info['created_time'] > 300:
                        files_to_remove.append(file_id)
                
                for file_id in files_to_remove:
                    try:
                        if os.path.exists(active_files[file_id]['filepath']):
                            os.remove(active_files[file_id]['filepath'])
                        del active_files[file_id]
                        logger.info(f"Cleaned up file: {file_id}")
                    except Exception as e:
                        logger.warning(f"Cleanup error for {file_id}: {e}")
        except Exception as e:
            logger.error(f"Cleanup thread error: {e}")
        
        time.sleep(60)

def start_cleanup_thread():
    global cleanup_thread
    if cleanup_thread is None or not cleanup_thread.is_alive():
        cleanup_thread = threading.Thread(target=cleanup_old_files, daemon=True)
        cleanup_thread.start()
        logger.info("Cleanup thread started")

def cleanup_all_files():
    try:
        with file_cleanup_lock:
            for file_id, file_info in active_files.items():
                try:
                    if os.path.exists(file_info['filepath']):
                        os.remove(file_info['filepath'])
                except:
                    pass
            active_files.clear()
        
        if os.path.exists(app.config['TEMP_AUDIO_DIR']):
            import shutil
            shutil.rmtree(app.config['TEMP_AUDIO_DIR'], ignore_errors=True)
        
        logger.info("All temporary files cleaned up")
    except Exception as e:
        logger.warning(f"Final cleanup error: {e}")

atexit.register(cleanup_all_files)

def get_memory_usage(): 
    try:
        process = psutil.Process(os.getpid())
        memory_info = process.memory_info()
        return {
            "rss_mb": memory_info.rss / 1024 / 1024,
            "vms_mb": memory_info.vms / 1024 / 1024,
            "available_mb": psutil.virtual_memory().available / 1024 / 1024,
            "percent": psutil.virtual_memory().percent
        }
    except Exception as e:
        logger.warning(f"Memory info error: {e}")
        return {"rss_mb": 0, "vms_mb": 0, "available_mb": 0, "percent": 0}

def initialize_models():  
    global stt_pipeline, llm_model, llm_tokenizer, tts_pipeline, tts_type
    
    try:
        logger.info(f"Initial memory usage: {get_memory_usage()}")
         
        if stt_pipeline is None:
            logger.info("Loading Whisper-tiny STT model...")
            try:
                stt_pipeline = pipeline(
                    "automatic-speech-recognition", 
                    model="openai/whisper-tiny",
                    device=device,
                    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                    token=HF_TOKEN,
                    return_timestamps=False
                )
                logger.info("βœ… STT model loaded successfully")
            except Exception as e:
                logger.error(f"STT loading failed: {e}")
                raise
            
            gc.collect()
            logger.info(f"STT loaded. Memory: {get_memory_usage()}")
 
        if llm_model is None:
            logger.info("Loading DialoGPT-small LLM...")
            try:
                model_name = "google/flan-t5-base"
                
                llm_tokenizer = AutoTokenizer.from_pretrained(
                    model_name,
                    token=HF_TOKEN,
                    trust_remote_code=True
                )
                
                llm_model = AutoModelForSeq2SeqLM.from_pretrained(
                    model_name,
                    torch_dtype=torch.float16 if device == "cuda" else torch.float32,
                    token=HF_TOKEN,
                    trust_remote_code=True
                ).to(device)
                
                if llm_tokenizer.pad_token is None:
                    llm_tokenizer.pad_token = llm_tokenizer.eos_token
                
                logger.info("βœ… LLM model loaded successfully")
            except Exception as e:
                logger.error(f"LLM loading failed: {e}")
                raise
                
            gc.collect()
            logger.info(f"LLM loaded. Memory: {get_memory_usage()}")
             
        if tts_pipeline is None:
            logger.info("Loading TTS model...")
            tts_loaded = False
            
            try:
                from gtts import gTTS
                tts_pipeline = "gtts"
                tts_type = "gtts"
                tts_loaded = True
                logger.info("βœ… Using gTTS (Google Text-to-Speech)")
            except ImportError:
                logger.warning("gTTS not available")
            
            if not tts_loaded:
                tts_pipeline = "silent"
                tts_type = "silent"
                logger.warning("Using silent fallback for TTS")
                
            gc.collect()
            logger.info(f"TTS loaded. Memory: {get_memory_usage()}")
            
        logger.info("πŸŽ‰ All models loaded successfully!")
        start_cleanup_thread()
        
    except Exception as e:
        logger.error(f"❌ Model loading error: {e}")
        logger.error(f"Memory usage at error: {get_memory_usage()}")
        raise e

@lru_cache(maxsize=32)
def cached_generate_response(text_hash, text): 
    return generate_llm_response(text)

def generate_llm_response(text):
    try: 
        if len(text) > 200:
            text = text[:200]

        if not text.strip():
            return "I'm listening. How can I help you?"
 
        inputs = llm_tokenizer(
            text,
            return_tensors="pt",
            truncation=True,
            padding=True,
            max_length=512
        )
        input_ids = inputs["input_ids"].to(device)
        attention_mask = inputs.get("attention_mask")
        if attention_mask is not None:
            attention_mask = attention_mask.to(device)
 
        with torch.no_grad():
            is_seq2seq = getattr(getattr(llm_model, "config", {}), "is_encoder_decoder", False)

            gen_kwargs = dict(
                max_new_tokens=50,
                do_sample=True,
                temperature=0.7,
                top_k=50,
                top_p=0.9,
                no_repeat_ngram_size=2,
                early_stopping=True,
                pad_token_id=llm_tokenizer.eos_token_id if llm_tokenizer.pad_token_id is None else llm_tokenizer.pad_token_id,
                use_cache=True
            )

            if is_seq2seq:
                outputs_ids = llm_model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    **gen_kwargs
                )
            else: 
                outputs_ids = llm_model.generate(
                    input_ids=input_ids,
                    **gen_kwargs
                )
 
        response = llm_tokenizer.decode(outputs_ids[0], skip_special_tokens=True)
 
        del inputs, input_ids, attention_mask, outputs_ids
        gc.collect()
        if device == "cuda":
            torch.cuda.empty_cache()

        response = response.strip()
        if not response or len(response) < 3:
            return "I understand. What else would you like to know?"

        return response

    except Exception as e:
        logger.error(f"LLM generation error: {e}", exc_info=True)
        return "I'm having trouble processing that. Could you try again?"


def preprocess_audio_optimized(audio_bytes):  
    try:
        logger.info(f"Processing audio: {len(audio_bytes)} bytes")
        
        if len(audio_bytes) > 44 and audio_bytes[:4] == b'RIFF':
            audio_bytes = audio_bytes[44:]  # WAV header'Δ± atla
            logger.info("WAV header removed")
        
        audio_data = np.frombuffer(audio_bytes, dtype=np.int16).astype(np.float32) / 32768.0
        
        max_samples = 30 * 16000
        if len(audio_data) > max_samples:
            audio_data = audio_data[:max_samples]
            logger.info("Audio trimmed to 30 seconds")
        
        min_samples = int(0.5 * 16000)
        if len(audio_data) < min_samples:
            logger.warning(f"Audio too short: {len(audio_data)/16000:.2f} seconds")
            return None, None
        
        logger.info(f"Audio processed: {len(audio_data)/16000:.2f} seconds")
        return 16000, audio_data
        
    except Exception as e:
        logger.error(f"Audio preprocessing error: {e}")
        raise e

def generate_tts_audio(text): 
    try:
        text = text.replace('\n', ' ').strip()
        
        if len(text) > 200:
            text = text[:200] + "..."
            
        if not text:
            text = "I understand."
        
        logger.info(f"TTS generating: '{text[:50]}...'")
        
        if tts_type == "gtts":
            from gtts import gTTS
            
            with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as tmp_file:
                try:
                    tts = gTTS(text=text, lang='en', slow=False)
                    tts.save(tmp_file.name)
                    
                    from pydub import AudioSegment
                    audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3")
                    audio_segment = audio_segment.set_frame_rate(16000).set_channels(1)  # Mono 16kHz
                    wav_buffer = io.BytesIO()
                    audio_segment.export(wav_buffer, format="wav")
                    wav_data = wav_buffer.getvalue()
                
                    os.unlink(tmp_file.name)
                
                    return wav_data
                    
                    if len(mp3_data) > 1000:
                        logger.info(f"TTS generated: {len(mp3_data)} bytes")
                        return mp3_data
                    else:
                        raise Exception("Generated audio too small")
                        
                except Exception as e:
                    if os.path.exists(tmp_file.name):
                        os.unlink(tmp_file.name)
                    raise e
        
        logger.warning("Using silent fallback")
        audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3") 
        wav_buffer = io.BytesIO()
        audio_segment.export(wav_buffer, format="wav")
        return wav_buffer.getvalue()
        
    except Exception as e:
        logger.error(f"TTS error: {e}")  
        try:
            audio_segment = AudioSegment.from_file(tmp_file.name, format="mp3") 
            wav_buffer = io.BytesIO()
            audio_segment.export(wav_buffer, format="wav")
            return wav_buffer.getvalue()
        except:
            return b''  

@app.route('/process_audio', methods=['POST'])
def process_audio():  
    start_time = time.time()
    
    if not all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline]):
        logger.error("Models not ready")
        return jsonify({"error": "Models are still loading, please wait..."}), 503
    
    if not request.data:
        return jsonify({"error": "No audio data received"}), 400
    
    if len(request.data) < 1000:
        return jsonify({"error": "Audio data too small"}), 400
     
    initial_memory = get_memory_usage()
    logger.info(f"🎯 Processing started. Memory: {initial_memory['rss_mb']:.1f}MB")

    try: 
        logger.info("🎀 Converting speech to text...")
        stt_start = time.time()
        
        rate, audio_data = preprocess_audio_optimized(request.data)
        
        if audio_data is None:
            return jsonify({"error": "Invalid or too short audio"}), 400
        
        stt_result = stt_pipeline(
            {"sampling_rate": rate, "raw": audio_data},
            generate_kwargs={"language": "en"}
        )
        transcribed_text = stt_result.get('text', '').strip()
         
        del audio_data
        gc.collect()
        
        stt_time = time.time() - stt_start
        logger.info(f"βœ… STT completed: '{transcribed_text}' ({stt_time:.2f}s)")
        
        if not transcribed_text or len(transcribed_text) < 2:
            transcribed_text = "Could you repeat that please?"

        logger.info("πŸ€– Generating AI response...")
        llm_start = time.time()
        
        text_hash = hash(transcribed_text.lower())
        assistant_response = cached_generate_response(text_hash, transcribed_text)
        
        llm_time = time.time() - llm_start
        logger.info(f"βœ… LLM completed: '{assistant_response}' ({llm_time:.2f}s)")

        logger.info("πŸ”Š Converting to speech...")
        tts_start = time.time()
        
        audio_response = generate_tts_audio(assistant_response)
        
        if not audio_response:
            return jsonify({"error": "TTS generation failed"}), 500
        
        tts_time = time.time() - tts_start
        total_time = time.time() - start_time
         
        gc.collect()
        torch.cuda.empty_cache() if device == "cuda" else None
        
        final_memory = get_memory_usage()
        logger.info(f"βœ… Processing complete! Total: {total_time:.2f}s (STT:{stt_time:.1f}s, LLM:{llm_time:.1f}s, TTS:{tts_time:.1f}s)")
        logger.info(f"Memory: {initial_memory['rss_mb']:.1f}MB β†’ {final_memory['rss_mb']:.1f}MB")

        if not os.path.exists(app.config['TEMP_AUDIO_DIR']):
            os.makedirs(app.config['TEMP_AUDIO_DIR'])
        
        file_id = str(uuid.uuid4())
        temp_filename = os.path.join(app.config['TEMP_AUDIO_DIR'], f"{file_id}.mp3")
        
        temp_filename = os.path.join(app.config['TEMP_AUDIO_DIR'], f"{file_id}.wav")
        with open(temp_filename, 'wb') as f:
            f.write(audio_response)
         
        with file_cleanup_lock:
            active_files[file_id] = {
                'filepath': temp_filename,
                'created_time': time.time(),
                'accessed': False
            }
         
        response_data = {
            'status': 'success',
            'file_id': file_id,
            'stream_url': f'/stream_audio/{file_id}',
            'message': assistant_response,
            'transcribed': transcribed_text,
            'processing_time': round(total_time, 2)
        }
        
        return jsonify(response_data)

    except Exception as e:
        logger.error(f"❌ Processing error: {e}", exc_info=True)
        gc.collect()
        torch.cuda.empty_cache() if device == "cuda" else None
        
        return jsonify({
            "error": "Processing failed",
            "details": str(e) if not IS_HF_SPACE else "Internal server error"
        }), 500

@app.route('/stream_audio/<file_id>')
def stream_audio(file_id):
    try:
        with file_cleanup_lock:
            if file_id in active_files:
                active_files[file_id]['accessed'] = True
                filepath = active_files[file_id]['filepath']
                
                if os.path.exists(filepath):
                    logger.info(f"Streaming audio: {file_id}")
                return send_file(
                    filepath,
                    mimetype='audio/wav',
                    as_attachment=False,
                    download_name='response.wav'
                )
        
        logger.warning(f"Audio file not found: {file_id}")
        return jsonify({'error': 'File not found'}), 404
        
    except Exception as e:
        logger.error(f"Stream error: {e}")
        return jsonify({'error': 'Stream failed'}), 500

@app.route('/health', methods=['GET'])
def health_check(): 
    memory = get_memory_usage()
    
    status = {
        "status": "ready" if all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline]) else "loading",
        "models": {
            "stt": stt_pipeline is not None,
            "llm": llm_model is not None and llm_tokenizer is not None,
            "tts": tts_pipeline is not None,
            "tts_type": tts_type
        },
        "system": {
            "device": device,
            "is_hf_space": IS_HF_SPACE,
            "memory_mb": round(memory['rss_mb'], 1),
            "available_mb": round(memory['available_mb'], 1),
            "memory_percent": round(memory['percent'], 1)
        },
        "files": {
            "active_count": len(active_files),
            "cleanup_running": cleanup_thread is not None and cleanup_thread.is_alive()
        }
    }
    
    return jsonify(status)

@app.route('/status', methods=['GET'])
def simple_status():
    models_ready = all([stt_pipeline, llm_model, llm_tokenizer, tts_pipeline])
    return jsonify({"ready": models_ready})

@app.route('/', methods=['GET'])
def home(): 
    return """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Voice AI Assistant</title>
        <style>
            body { font-family: Arial, sans-serif; margin: 40px; }
            .status { font-size: 18px; margin: 20px 0; }
            .ready { color: green; }
            .loading { color: orange; }
            .error { color: red; }
            code { background: #f4f4f4; padding: 2px 5px; }
        </style>
    </head>
    <body>
        <h1>πŸŽ™οΈ Voice AI Assistant Server</h1>
        <div class="status">Status: <span id="status">Checking...</span></div>
        
        <h2>API Endpoints:</h2>
        <ul>
            <li><code>POST /process_audio</code> - Dsn Mechanics </li>
            <li><code>POST /process_audio</code> - Process audio (WAV format, max 16MB)</li>
            <li><code>GET /stream_audio/&lt;file_id&gt;</code> - Download audio response</li>
            <li><code>GET /health</code> - Detailed health check</li>
            <li><code>GET /status</code> - Simple ready status</li>
        </ul>
        
        <h2>Features:</h2>
        <ul>
            <li>Speech-to-Text (Whisper Tiny)</li>
            <li>AI Response Generation (DialoGPT Small)</li>
            <li>Text-to-Speech (gTTS)</li>
            <li>Automatic file cleanup</li>
            <li>Memory optimization</li>
        </ul>
        
        <p><em>Optimized for ESP32 and Hugging Face Spaces</em></p>
        
        <script>
        function updateStatus() {
            fetch('/status')
            .then(r => r.json())
            .then(d => {
                const statusEl = document.getElementById('status');
                if (d.ready) {
                    statusEl.textContent = 'βœ… Ready';
                    statusEl.className = 'ready';
                } else {
                    statusEl.textContent = '⏳ Loading models...';
                    statusEl.className = 'loading';
                }
            })
            .catch(() => {
                document.getElementById('status').textContent = '❌ Error';
                document.getElementById('status').className = 'error';
            });
        }
        
        updateStatus();
        setInterval(updateStatus, 5000);
        </script>
    </body>
    </html>
    """

@app.errorhandler(Exception)
def handle_exception(e):
    logger.error(f"Unhandled exception: {e}", exc_info=True)
    return jsonify({"error": "Internal server error"}), 500

@app.errorhandler(413)
def handle_large_file(e):
    return jsonify({"error": "Audio file too large (max 16MB)"}), 413

if __name__ == '__main__':
    try:
        logger.info("πŸš€ Starting Voice AI Assistant Server")
        logger.info(f"Environment: {'Hugging Face Spaces' if IS_HF_SPACE else 'Local'}")
        
        initialize_models()
        logger.info("πŸŽ‰ Server ready!")
        
    except Exception as e:
        logger.error(f"❌ Startup failed: {e}")
        exit(1)
     
    port = int(os.environ.get('PORT', 7860))
    logger.info(f"🌐 Server starting on port {port}")
     
    app.run(
        host='0.0.0.0', 
        port=port, 
        debug=False,
        threaded=True,
        use_reloader=False
    )