File size: 10,302 Bytes
246b21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9071d89
8565695
246b21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bc0193
246b21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb224d
 
8565695
 
 
0fb224d
246b21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a00eda
246b21d
 
8565695
246b21d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# app.py
import os
import sys
import subprocess
import importlib
import site
import warnings
import logging
import time
from pathlib import Path

import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
import spaces
import time
import time, random
# ---------------------------
# Environment flags (reduce fusion/compilation) β€” set early
# ---------------------------
# These help avoid some torchinductor/flash-attn fusion issues that provoke guard errors.
os.environ.setdefault("TORCHINDUCTOR_DISABLE", "1")
os.environ.setdefault("TORCHINDUCTOR_FUSION", "0")
os.environ.setdefault("USE_FLASH_ATTENTION", "0")
# Some environments check this; safe to set
os.environ.setdefault("XLA_IGNORE_ENV_VARS", "1")

# ---------------------------
# FlashAttention install (best-effort)
# ---------------------------
def try_install_flash_attention():
    try:
        print("Attempting to download and install FlashAttention wheel...")
        wheel = hf_hub_download(
            repo_id="rahul7star/flash-attn-3",
            repo_type="model",
            filename="128/flash_attn_3-3.0.0b1-cp39-abi3-linux_x86_64.whl",
        )
        subprocess.run([sys.executable, "-m", "pip", "install", wheel], check=True)
        # refresh site-packages
        site.addsitedir(site.getsitepackages()[0])
        importlib.invalidate_caches()
        print("βœ… FlashAttention installed.")
        return True
    except Exception as e:
        print(f"⚠️ FlashAttention install failed: {e}")
        return False

# ---------------------------
# Torch logging / warnings
# ---------------------------
warnings.filterwarnings("ignore")
logging.getLogger("torch").setLevel(logging.ERROR)
# reduce torch verbose logging
try:
    torch._logging.set_logs(
        dynamo=logging.ERROR,
        dynamic=logging.ERROR,
        aot=logging.ERROR,
        inductor=logging.ERROR,
        guards=False,
        recompiles=False
    )
except Exception:
    pass

# Make Dynamo tolerant initially (we'll disable if it fails)
try:
    import torch._dynamo as _dynamo
    _dynamo.config.suppress_errors = True
    _dynamo.config.cache_size_limit = 0  # avoid large guard caches
except Exception:
    _dynamo = None

# ---------------------------
# Download models if needed
# ---------------------------
def ensure_models_downloaded(marker_file=".models_ready"):
    marker = Path(marker_file)
    if marker.exists():
        print("Models already downloaded (marker found).")
        return True
    if not Path("download_models.py").exists():
        print("download_models.py not found in repo.")
        return False
    try:
        print("Running download_models.py ...")
        subprocess.run([sys.executable, "download_models.py"], check=True)
        marker.write_text("ok")
        print("Models download finished.")
        return True
    except Exception as e:
        print("Model download failed:", e)
        return False

# ---------------------------
# Load Kandinsky pipeline with smart Dynamo handling
# ---------------------------
def load_pipeline(conf_path="./configs/config_5s_sft.yaml", move_to_cuda_if_available=True):
    """
    Attempt to load the pipeline normally. If Dynamo/guard errors are raised,
    disable torch._dynamo and reload in eager mode.
    Returns pipeline or raises.
    """
    from kandinsky import get_T2V_pipeline  # import inside function to respect env changes

    def _do_load():
        print("Loading pipeline with device_map pointing to cuda if available...")
        device_map = None
        if torch.cuda.is_available():
            # let the pipeline place modules onto CUDA by device_map
            device_map = {"dit": "cuda:0", "vae": "cuda:0", "text_embedder": "cuda:0"}
        else:
            device_map = "cpu"
        pipe = get_T2V_pipeline(device_map=device_map, conf_path=conf_path, offload=False, magcache=False)
        # If pipeline has .to and CUDA is available, move it
        if move_to_cuda_if_available and torch.cuda.is_available() and hasattr(pipe, "to"):
            try:
                pipe.to("cuda")
            except Exception as e:
                # fallback: ignore and continue (some pipelines handle own device_map)
                print("Warning while moving pipeline to CUDA:", e)
        return pipe

    try:
        # Try normal load first (Dynamo may be enabled but we've suppressed errors)
        pipe = _do_load()
        print("Pipeline loaded successfully (initial try).")
        return pipe
    except Exception as e:
        # Detect Dynamo/guard-related signatures and fallback
        msg = str(e).lower()
        if "dynamo" in msg or "guard" in msg or "attributeerror" in msg or "caught" in msg:
            print("⚠️ Dynamo/guard-related error detected while loading pipeline:", e)
            # Disable torch dynamo and try again
            try:
                if _dynamo is not None:
                    print("Disabling torch._dynamo and retrying load in eager mode...")
                    _dynamo.disable()
                else:
                    print("torch._dynamo not available; proceeding to retry load.")
            except Exception as ex_disable:
                print("Error disabling torch._dynamo:", ex_disable)
            # Retry load
            try:
                pipe = _do_load()
                print("Pipeline loaded successfully after disabling torch._dynamo.")
                return pipe
            except Exception as e2:
                print("Failed to load pipeline even after disabling torch._dynamo:", e2)
                raise
        else:
            # Not obviously a Dynamo issue β€” re-raise
            raise

# ---------------------------
# Startup sequence
# ---------------------------
print("=== startup: installing optional FlashAttention (best-effort) ===")
try_install_flash_attention()

print("=== startup: ensuring models ===")
if not ensure_models_downloaded():
    print("Models not available; app may fail at inference. Proceeding anyway.")

print("=== startup: loading pipeline (smart) ===")
pipe = None
try:
    pipe = load_pipeline(conf_path="./configs/config_5s_sft.yaml", move_to_cuda_if_available=True)
except Exception as e:
    print("Pipeline load ultimately failed:", e)
    pipe = None

# ---------------------------
# Helper: ensure pipeline is on CUDA at generation time
# ---------------------------
def ensure_pipe_on_cuda(pipeline):
    if pipeline is None:
        raise RuntimeError("Pipeline is None")
    # If CUDA not available, raise early
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA not available on this machine")
    # If pipeline supports .to, move it
    if hasattr(pipeline, "to"):
        try:
            pipeline.to("cuda")
        except Exception as e:
            # Some pipelines use device_map placement β€” ignore move failure
            print("Warning: pipeline.to('cuda') raised:", e)

# ---------------------------
# Generation function (runs on GPU when used)
# ---------------------------
@spaces.GPU(duration=60)
def generate_output(prompt, mode, duration, width, height, steps, guidance, scheduler):
    """
    This generation function assumes the pipeline is already loaded (pipe variable).
    It will raise a helpful error if the pipeline wasn't loaded at startup.
    """
    print(prompt)
    if pipe is None:
        return None, "❌ Pipeline not initialized at startup. Check logs."

    # Ensure CUDA available and pipeline on CUDA
    if not torch.cuda.is_available():
        return None, "❌ CUDA not available on this host."

    try:
        # If dynamo is still enabled and we suspect it can cause trouble during forward,
        # run inference inside a context where dynamo is disabled to be safe.
        try:
            if _dynamo is not None:
                _dynamo.disable()
        except Exception:
            pass

       

      
        out_name = f"/tmp/{int(time.time())}_{random.randint(100,999)}.{'mp4' if mode == 'video' else 'png'}"



        if mode == "image":
            pipe(prompt, time_length=0, width=width, height=height, save_path=out_name)
            return out_name, f"βœ… Image saved to {out_name}"

        # video path
        pipe(prompt,
             time_length=duration,
             width=width,
             height=height,
             num_steps=steps if steps else None,
             guidance_weight=guidance if guidance else None,
             scheduler_scale=scheduler if scheduler else None,
             save_path=out_name)
        return out_name, f"βœ… Video saved to {out_name}"

    except torch.cuda.OutOfMemoryError:
        return None, "⚠️ CUDA OOM β€” try reducing resolution/duration/steps."
    except Exception as e:
        return None, f"❌ Generation error: {e}"

# ---------------------------
# Gradio UI
# ---------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="Kandinsky 5.0 T2V (robust load)") as demo:
    gr.Markdown("## Kandinsky 5.0 β€” Robust pipeline loader (smart Dynamo fallback)")

    with gr.Row():
        with gr.Column(scale=2):
            mode = gr.Radio(["video", "image"], value="video", label="Mode")
            prompt = gr.Textbox(label="Prompt", value="A dog in red boots")
            duration = gr.Slider(1, 10, step=1, value=2, label="Duration (s)")
            width = gr.Radio([512, 768], value=768, label="Width")
            height = gr.Radio([512, 768], value=512, label="Height")
            steps = gr.Slider(4, 50, step=1, value=10, label="Sampling Steps")
            guidance = gr.Slider(0.0, 20.0, step=0.5, value=8.0, label="Guidance Weight")
            scheduler = gr.Slider(1.0, 10.0, step=0.5, value=5.0, label="Scheduler Scale")
            btn = gr.Button("Generate", variant="primary")

        with gr.Column(scale=3):
            out_video = gr.Video(label="Output")
            status = gr.Textbox(label="Status", lines=6)

    btn.click(fn=generate_output,
              inputs=[prompt, mode, duration, width, height, steps, guidance, scheduler],
              outputs=[out_video, status])

# ---------------------------
# Launch
# ---------------------------
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=int(os.environ.get("PORT", 7860)))