|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
MODEL_ID = "Qwen/Qwen2.5-Coder-1.5B-Instruct" |
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_ID, |
|
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32 |
|
|
) |
|
|
model.to(device) |
|
|
|
|
|
def generate(prompt): |
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.2) |
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=generate, |
|
|
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), |
|
|
outputs=gr.Textbox(lines=2, max_lines=30) |
|
|
) |
|
|
|
|
|
demo.launch() |
|
|
|