File size: 21,638 Bytes
5720799
86b116d
6015c25
86b116d
0e216c6
ac83e06
89a4312
86b116d
 
 
2665582
857c4c0
ac83e06
73ed159
bed2d0a
 
e0ec429
b40bdef
 
 
b5d5e39
 
 
 
 
758943e
1949ac7
e2ee43d
f446f02
86b116d
 
857c4c0
 
e9b4a9e
 
fde6c6f
 
d891499
 
bed2d0a
 
 
0757010
 
1949ac7
0757010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e5f83
bed2d0a
d891499
0757010
 
 
 
 
 
 
 
 
 
 
 
 
 
22e5f83
0757010
 
b40bdef
 
 
 
 
 
 
 
0757010
 
22e5f83
0757010
 
 
22e5f83
0757010
 
bed2d0a
 
0757010
 
 
 
 
 
 
 
 
 
9144b02
0757010
 
9144b02
e0ec429
bed2d0a
e0ec429
 
 
 
 
 
 
bed2d0a
9144b02
e0ec429
9144b02
0757010
9144b02
e0ec429
9144b02
 
0757010
 
 
 
9144b02
22e5f83
 
 
e0ec429
 
 
 
22e5f83
 
 
 
 
 
 
e0ec429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c74ffa
0757010
1949ac7
0757010
86b116d
bed2d0a
 
 
aba1e9b
bed2d0a
 
 
d891499
 
809cf6d
 
d891499
 
 
 
 
 
 
 
 
bed2d0a
 
d891499
 
 
809cf6d
 
 
0757010
 
809cf6d
22e5f83
 
 
809cf6d
 
86b116d
809cf6d
 
 
 
 
 
 
9144b02
809cf6d
 
 
 
9144b02
809cf6d
 
737aa03
0757010
e2ee43d
0757010
 
809cf6d
 
 
 
 
0b2b7e6
809cf6d
 
9144b02
2262f42
809cf6d
 
9144b02
809cf6d
 
 
 
 
 
9144b02
809cf6d
0b2b7e6
 
 
 
 
 
 
 
9144b02
0b2b7e6
 
 
 
 
 
 
809cf6d
0b2b7e6
 
 
 
 
809cf6d
0b2b7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d891499
0b2b7e6
 
d891499
0b2b7e6
 
 
22e5f83
 
0b2b7e6
 
22e5f83
 
0b2b7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d891499
 
0b2b7e6
 
d891499
 
 
0b2b7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d891499
0b2b7e6
 
 
 
 
 
 
 
22e5f83
0b2b7e6
 
 
 
 
9144b02
0b2b7e6
 
 
 
 
 
 
 
 
22e5f83
0b2b7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf25842
052fcc8
0757010
052fcc8
 
0757010
 
1949ac7
0757010
1949ac7
0757010
 
 
 
 
 
 
bed2d0a
d891499
 
 
22e5f83
d891499
0757010
 
 
bed2d0a
0757010
 
 
 
 
 
bed2d0a
2262f42
1f63383
 
 
22e5f83
 
 
 
 
 
1f63383
0b2b7e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import streamlit as st
import time
import os
import sys
import json
import asyncio
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))
from utils.config import config
from core.session import session_manager
from core.memory import check_redis_health
from core.coordinator import coordinator
from core.errors import translate_error
from core.personality import personality
from services.hf_endpoint_monitor import hf_monitor
from services.weather import weather_service
from core.llm import LLMClient
from core.providers.ollama import OllamaProvider
from core.providers.huggingface import HuggingFaceProvider
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

st.set_page_config(page_title="CosmicCat AI Assistant", page_icon="🐱", layout="wide")

# Initialize session state safely at the top of app.py
if "messages" not in st.session_state:
    st.session_state.messages = []
if "last_error" not in st.session_state:
    st.session_state.last_error = ""
if "is_processing" not in st.session_state:
    st.session_state.is_processing = False
if "ngrok_url_temp" not in st.session_state:
    st.session_state.ngrok_url_temp = st.session_state.get("ngrok_url", "https://7bcc180dffd1.ngrok-free.app")
if "cosmic_mode" not in st.session_state:
    st.session_state.cosmic_mode = True  # Default to cosmic mode
if "show_welcome" not in st.session_state:
    st.session_state.show_welcome = True

# Sidebar layout redesign
with st.sidebar:
    st.title("🐱 CosmicCat AI Assistant")
    st.markdown("Your personal AI-powered life development assistant")
    
    # PRIMARY ACTIONS
    st.subheader("πŸ’¬ Primary Actions")
    model_options = {
        "Mistral 7B (Local)": "mistral:latest",
        "Llama 2 7B (Local)": "llama2:latest",
        "OpenChat 3.5 (Local)": "openchat:latest"
    }
    selected_model_name = st.selectbox(
        "Select Model",
        options=list(model_options.keys()),
        index=0,
        key="sidebar_model_select"
    )
    st.session_state.selected_model = model_options[selected_model_name]
    
    # Toggle for cosmic mode using checkbox
    st.session_state.cosmic_mode = st.checkbox("Enable Cosmic Mode", value=st.session_state.cosmic_mode)
    
    st.divider()
    
    # CONFIGURATION
    st.subheader("βš™οΈ Configuration")
    ngrok_url_input = st.text_input(
        "Ollama Server URL",
        value=st.session_state.ngrok_url_temp,
        help="Enter your ngrok URL",
        key="sidebar_ngrok_url"
    )
    
    if ngrok_url_input != st.session_state.ngrok_url_temp:
        st.session_state.ngrok_url_temp = ngrok_url_input
        st.success("βœ… URL updated!")
        
    if st.button("πŸ“‘ Test Connection"):
        try:
            # Use OllamaProvider to test connection
            ollama_provider = OllamaProvider(st.session_state.selected_model)
            # Test model validation
            is_valid = ollama_provider.validate_model()
            if is_valid:
                st.success("βœ… Connection successful!")
            else:
                st.error("❌ Model validation failed")
        except Exception as e:
            st.error(f"❌ Error: {str(e)[:50]}...")
            
    if st.button("πŸ—‘οΈ Clear History"):
        st.session_state.messages = []
        st.success("History cleared!")
        
    st.divider()
    
    # SYSTEM STATUS
    with st.expander("πŸ” System Status", expanded=False):
        st.subheader("πŸ“Š System Monitor")
        try:
            from services.ollama_monitor import check_ollama_status
            ollama_status = check_ollama_status()
            if ollama_status.get("running"):
                st.success("πŸ¦™ Ollama: Running")
            else:
                st.warning("πŸ¦™ Ollama: Not running")
        except:
            st.info("πŸ¦™ Ollama: Unknown")
            
        try:
            hf_status = hf_monitor.check_endpoint_status()
            # Enhanced HF status display with cat-themed messages
            if hf_status.get('available'):
                if hf_status.get('initialized', False):
                    st.success(f"πŸ€— HF Endpoint: Available ({hf_status.get('status_code')} OK)")
                    if hf_status.get('model'):
                        st.info(f"   Model: {hf_status.get('model')}")
                    if hf_status.get('region'):
                        st.info(f"   Region: {hf_status.get('region')}")
                    if hf_status.get('warmup_count'):
                        st.info(f"   Warmup Count: {hf_status.get('warmup_count')}")
                else:
                    st.warning("⏳ Kittens Waking Up...")
            elif hf_status.get('status_code') == 200:
                st.info("πŸ“‘ Calling Space Friends...")
            else:
                st.error("😴 Nap Cat")
        except Exception as e:
            st.info("⏳ Kittens Stretching...")
            
        if check_redis_health():
            st.success("πŸ’Ύ Redis: Connected")
        else:
            st.error("πŸ’Ύ Redis: Disconnected")
            
    st.divider()
    
    st.subheader("πŸ› Debug Info")
    # Show enhanced debug information
    st.markdown(f"**Environment:** {'HF Space' if config.is_hf_space else 'Local'}")
    st.markdown(f"**Model:** {st.session_state.selected_model}")
    st.markdown(f"**Fallback:** {'Enabled' if config.use_fallback else 'Disabled'}")
    
    # Show active features
    features = []
    if os.getenv("TAVILY_API_KEY"):
        features.append("Web Search")
    if config.openweather_api_key:
        features.append("Weather")
    st.markdown(f"**Active Features:** {', '.join(features) if features else 'None'}")
    
    # Show recent activity
    try:
        user_session = session_manager.get_session("default_user")
        coord_stats = user_session.get('ai_coordination', {})
        if coord_stats and coord_stats.get('last_coordination'):
            st.markdown(f"**Last Request:** {coord_stats.get('last_coordination')}")
        else:
            st.markdown("**Last Request:** N/A")
    except:
        st.markdown("**Last Request:** N/A")
        
    # Show Ollama ping status
    try:
        import requests
        import time
        start_time = time.time()
        headers = {
            "ngrok-skip-browser-warning": "true",
            "User-Agent": "CosmicCat-Debug"
        }
        response = requests.get(
            f"{st.session_state.ngrok_url_temp}/api/tags",
            headers=headers,
            timeout=15
        )
        ping_time = round((time.time() - start_time) * 1000)
        if response.status_code == 200:
            st.markdown(f"**Ollama Ping:** {response.status_code} OK ({ping_time}ms)")
        else:
            st.markdown(f"**Ollama Ping:** {response.status_code} Error")
    except Exception as e:
        st.markdown("**Ollama Ping:** Unreachable")
        
    # Redis status
    if check_redis_health():
        st.markdown("**Redis:** Healthy")
    else:
        st.markdown("**Redis:** Unhealthy")

# Main interface
st.title("🐱 CosmicCat AI Assistant")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")

# Show welcome message only once
if st.session_state.show_welcome:
    with st.chat_message("assistant"):
        greeting = personality.get_greeting(cosmic_mode=st.session_state.cosmic_mode)
        st.markdown(greeting)
    st.session_state.show_welcome = False

# Consistent message rendering function with cosmic styling
def render_message(role, content, source=None, timestamp=None):
    """Render chat messages with consistent styling"""
    with st.chat_message(role):
        if source:
            if source == "local_kitty":
                st.markdown(f"### 🐱 Cosmic Kitten Says:")
            elif source == "orbital_station":
                st.markdown(f"### πŸ›°οΈ Orbital Station Reports:")
            elif source == "cosmic_summary":
                st.markdown(f"### 🌟 Final Cosmic Summary:")
            elif source == "error":
                st.markdown(f"### ❌ Error:")
            elif source == "space_story":
                st.markdown(f"### 🐱 Cosmic Kitten Story:")
            else:
                st.markdown(f"### {source}")
        st.markdown(content)
        if timestamp:
            st.caption(f"πŸ•’ {timestamp}")

# Display messages
for message in st.session_state.messages:
    render_message(
        message["role"],
        message["content"],
        message.get("source"),
        message.get("timestamp")
    )

# Input validation function
def validate_user_input(text):
    """Validate and sanitize user input"""
    if not text or not text.strip():
        return False, "Input cannot be empty"
    if len(text) > 1000:
        return False, "Input too long (max 1000 characters)"
    
    # Check for potentially harmful patterns
    harmful_patterns = ["<script", "javascript:", "onload=", "onerror="]
    if any(pattern in text.lower() for pattern in harmful_patterns):
        return False, "Potentially harmful input detected"
    
    return True, text.strip()

# Chat input - FIXED VERSION
user_input = st.chat_input("Type your message here...", disabled=st.session_state.is_processing)

# Process message when received
if user_input and not st.session_state.is_processing:
    # Validate input
    is_valid, validated_input = validate_user_input(user_input)
    if not is_valid:
        st.error(validated_input)
        st.session_state.is_processing = False
        st.experimental_rerun()  # Fixed: use experimental_rerun
    else:
        st.session_state.is_processing = True
        
        # Display user message immediately
        with st.chat_message("user"):
            st.markdown(validated_input)
            
        # Add to message history - ensure proper format
        st.session_state.messages.append({
            "role": "user",
            "content": validated_input,
            "timestamp": datetime.now().strftime("%H:%M:%S")
        })
        
        # Process AI response
        response_container = st.empty()
        status_placeholder = st.empty()
        response_placeholder = st.empty()
        
        try:
            # Get conversation history from session
            user_session = session_manager.get_session("default_user")
            conversation_history = user_session.get("conversation", []).copy()
            
            # Add the current user message to history for context
            conversation_history.append({"role": "user", "content": validated_input})
            
            # Check if cosmic mode is enabled
            if st.session_state.cosmic_mode:
                # Process cosmic cascade response
                status_placeholder.info("🐱 Cosmic Kitten Responding...")
                
                try:
                    # Get conversation history
                    user_session = session_manager.get_session("default_user")
                    conversation_history = user_session.get("conversation", []).copy()
                    conversation_history.append({"role": "user", "content": validated_input})
                    
                    # Stage 1: Local Ollama Response
                    ollama_provider = OllamaProvider(st.session_state.selected_model)
                    local_response = ollama_provider.generate(validated_input, conversation_history)
                    
                    if local_response:
                        # Display response (no nested st.chat_message)
                        st.markdown(f"### 🐱 Cosmic Kitten Says:\n{local_response}")
                        st.session_state.messages.append({
                            "role": "assistant",
                            "content": local_response,
                            "source": "local_kitty",
                            "timestamp": datetime.now().strftime("%H:%M:%S")
                        })
                    
                    # Stage 2: HF Endpoint Analysis
                    status_placeholder.info("πŸ›°οΈ Beaming Query to Orbital Station...")
                    if config.hf_token:
                        # Check HF status first
                        hf_status = hf_monitor.check_endpoint_status()
                        if not hf_status['available']:
                            status_placeholder.info(personality.get_initializing_message())
                        
                        hf_provider = HuggingFaceProvider("meta-llama/Llama-2-7b-chat-hf")
                        hf_response = hf_provider.generate(validated_input, conversation_history)
                        
                        if hf_response:
                            # Display response (no nested st.chat_message)
                            st.markdown(f"### πŸ›°οΈ Orbital Station Reports:\n{hf_response}")
                            st.session_state.messages.append({
                                "role": "assistant",
                                "content": hf_response,
                                "source": "orbital_station",
                                "timestamp": datetime.now().strftime("%H:%M:%S")
                            })
                    
                    # Stage 3: Local Synthesis
                    status_placeholder.info("🐱 Cosmic Kitten Synthesizing Wisdom...")
                    
                    # Update history with both responses
                    synthesis_history = conversation_history.copy()
                    synthesis_history.extend([
                        {"role": "assistant", "content": local_response},
                        {"role": "assistant", "content": hf_response, "source": "cloud"}
                    ])
                    
                    synthesis = ollama_provider.generate(
                        f"Synthesize these two perspectives:\n1. Local: {local_response}\n2. Cloud: {hf_response}",
                        synthesis_history
                    )
                    
                    if synthesis:
                        # Display response (no nested st.chat_message)
                        st.markdown(f"### 🌟 Final Cosmic Summary:\n{synthesis}")
                        st.session_state.messages.append({
                            "role": "assistant",
                            "content": synthesis,
                            "source": "cosmic_summary",
                            "timestamp": datetime.now().strftime("%H:%M:%S")
                        })
                    
                    status_placeholder.success("✨ Cosmic Cascade Complete!")
                    
                except Exception as e:
                    error_msg = f"🌌 Cosmic disturbance: {str(e)}"
                    st.error(error_msg)
                    st.session_state.messages.append({
                        "role": "assistant",
                        "content": error_msg,
                        "source": "error",
                        "timestamp": datetime.now().strftime("%H:%M:%S")
                    })
            else:
                # Traditional processing
                # Try Ollama first
                status_placeholder.info("πŸ¦™ Contacting Ollama...")
                ai_response = None
                
                try:
                    # Use the OllamaProvider directly with proper configuration
                    ollama_provider = OllamaProvider(st.session_state.selected_model)
                    ai_response = ollama_provider.generate(validated_input, conversation_history)
                    
                    if ai_response:
                        st.markdown(ai_response)  # Use st.markdown instead of response_placeholder
                        status_placeholder.success("βœ… Response received!")
                    else:
                        status_placeholder.warning("⚠️ Empty response from Ollama")
                        
                except Exception as ollama_error:
                    error_message = str(ollama_error)
                    status_placeholder.error(f"❌ Ollama error: {error_message[:100]}...")
                    logger.error(f"Ollama error: {error_message}")
                    
                    # Fallback to HF if available
                    if config.hf_token and not ai_response:
                        status_placeholder.info("⚑ Initializing HF Endpoint (2–4 minutes)...")
                        
                        try:
                            # Check HF status first
                            hf_status = hf_monitor.check_endpoint_status()
                            if not hf_status['available']:
                                status_placeholder.info(personality.get_initializing_message())
                                
                            # Use the HuggingFaceProvider directly
                            hf_provider = HuggingFaceProvider("meta-llama/Llama-2-7b-chat-hf")
                            ai_response = hf_provider.generate(validated_input, conversation_history)
                            
                            if ai_response:
                                st.markdown(ai_response)  # Use st.markdown instead of response_placeholder
                                status_placeholder.success("βœ… HF response received!")
                            else:
                                status_placeholder.error("❌ No response from HF")
                                
                        except Exception as hf_error:
                            error_message = str(hf_error)
                            status_placeholder.error(f"❌ HF also failed: {error_message[:100]}...")
                            logger.error(f"HF error: {error_message}")
                            
                # Save response if successful
                if ai_response:
                    # Update conversation history in session
                    conversation = user_session.get("conversation", []).copy()
                    conversation.append({"role": "user", "content": validated_input})
                    conversation.append({"role": "assistant", "content": ai_response})
                    session_manager.update_session("default_user", {"conversation": conversation})
                    
                    # Add to message history
                    st.session_state.messages.append({
                        "role": "assistant",
                        "content": ai_response,
                        "timestamp": datetime.now().strftime("%H:%M:%S")
                    })
                else:
                    error_msg = "Sorry, I couldn't process your request. Please try again."
                    st.session_state.messages.append({
                        "role": "assistant",
                        "content": error_msg,
                        "timestamp": datetime.now().strftime("%H:%M:%S")
                    })
                    st.markdown(error_msg)
                    
        except Exception as e:
            error_msg = f"System error: {str(e)}"
            logger.error(f"Chat processing error: {error_msg}")
            st.error(error_msg)
            st.session_state.messages.append({
                "role": "assistant",
                "content": error_msg,
                "timestamp": datetime.now().strftime("%H:%M:%S")
            })
        finally:
            st.session_state.is_processing = False
            st.experimental_rerun()  # Fixed: use experimental_rerun

# Add evaluation dashboard tab (separate from chat interface) - ONLY ABOUT TAB NOW
st.divider()
# Only one tab now - About
tab1, = st.tabs(["ℹ️ About"])

with tab1:
    st.header("ℹ️ About CosmicCat AI Assistant")
    st.markdown("""
    The CosmicCat AI Assistant is a sophisticated conversational AI system with the following capabilities:
    
    ### 🧠 Core Features
    - **Multi-model coordination**: Combines local Ollama models with cloud-based Hugging Face endpoints
    - **Live web search**: Integrates with Tavily API for current information
    - **Persistent memory**: Uses Redis for conversation history storage
    - **Hierarchical reasoning**: Fast local responses with deep cloud analysis
    
    ### πŸš€ Cosmic Mode
    When enabled, the AI follows a three-stage response pattern:
    1. **🐱 Cosmic Kitten Response**: Immediate local processing
    2. **πŸ›°οΈ Orbital Station Analysis**: Deep cloud-based analysis
    3. **🌟 Final Synthesis**: Unified response combining both perspectives
    
    ### πŸ› οΈ Technical Architecture
    - **Primary model**: Ollama (local processing for fast responses)
    - **Secondary model**: Hugging Face Inference API (deep analysis)
    - **External data**: Web search, weather data, and space information
    - **Memory system**: Redis-based session management
    
    ### πŸ“Š Evaluation Tools
    - Behavior testing with sample prompts
    - Performance metrics and analytics
    """)

# Add special command handling for stories
if user_input and user_input.lower().strip() in ["tell me a story", "tell me a cosmic cat story", "story", "cosmic story", "tell me a space story"]:
    story = personality.get_space_story()
    st.markdown(f"### 🐱 Cosmic Kitten Story:\n\n{story}")
    st.session_state.messages.append({
        "role": "assistant",
        "content": story,
        "source": "space_story",
        "timestamp": datetime.now().strftime("%H:%M:%S")
    })
    st.session_state.is_processing = False
    st.experimental_rerun()