File size: 8,616 Bytes
5720799
86b116d
6015c25
86b116d
89a4312
86b116d
 
8b21538
86b116d
 
2665582
857c4c0
758943e
86b116d
e2ee43d
86b116d
 
 
4f1a78a
857c4c0
 
4f1a78a
89a4312
 
4f1a78a
89a4312
 
4f1a78a
89a4312
 
4f1a78a
89a4312
 
4f1a78a
89a4312
 
4f1a78a
89a4312
 
e2ee43d
86b116d
 
 
 
4f1a78a
86b116d
 
 
 
 
 
 
b127732
86b116d
 
758943e
86b116d
4f1a78a
86b116d
 
 
 
 
e2ee43d
4f1a78a
86b116d
 
 
 
 
4f1a78a
857c4c0
 
4f1a78a
 
 
 
 
 
 
857c4c0
 
4f1a78a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c74ffa
5720799
86b116d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2ee43d
86b116d
 
 
 
4f1a78a
86b116d
 
4f1a78a
857c4c0
 
4f1a78a
86b116d
2665582
 
86b116d
 
4f1a78a
86b116d
 
8b21538
86b116d
 
857c4c0
4f1a78a
86b116d
 
857c4c0
 
4f1a78a
 
857c4c0
 
89a4312
 
 
 
857c4c0
 
89a4312
 
 
 
4f1a78a
 
86b116d
857c4c0
 
 
89a4312
 
 
 
857c4c0
 
89a4312
 
 
 
4f1a78a
0194326
86b116d
857c4c0
86b116d
 
89a4312
2665582
e228957
86b116d
 
0194326
86b116d
857c4c0
4f1a78a
86b116d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import streamlit as st
import time
import os
import sys
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))

from utils.config import config
from core.llm import send_to_ollama, send_to_hf
from core.session import session_manager
from core.memory import check_redis_health

st.set_page_config(page_title="AI Life Coach", page_icon="🧠", layout="wide")

# Initialize session state
if "messages" not in st.session_state:
    st.session_state.messages = []

if "last_error" not in st.session_state:
    st.session_state.last_error = ""

if "last_ollama_call_success" not in st.session_state:
    st.session_state.last_ollama_call_success = None

if "last_ollama_call_time" not in st.session_state:
    st.session_state.last_ollama_call_time = ""

if "last_ollama_response_preview" not in st.session_state:
    st.session_state.last_ollama_response_preview = ""

if "last_hf_call_success" not in st.session_state:
    st.session_state.last_hf_call_success = None

if "last_hf_call_time" not in st.session_state:
    st.session_state.last_hf_call_time = ""

if "last_hf_response_preview" not in st.session_state:
    st.session_state.last_hf_response_preview = ""

# Sidebar
with st.sidebar:
    st.title("AI Life Coach")
    st.markdown("Your personal AI-powered life development assistant")

    # Model selection
    model_options = {
        "Mistral 7B (Local)": "mistral:latest",
        "Llama 2 7B (Local)": "llama2:latest",
        "OpenChat 3.5 (Local)": "openchat:latest"
    }
    selected_model_name = st.selectbox(
        "Select Model",
        options=list(model_options.keys()),
        index=0
    )
    st.session_state.selected_model = model_options[selected_model_name]

    # Ollama URL input
    st.session_state.ngrok_url = st.text_input(
        "Ollama Server URL",
        value=st.session_state.get("ngrok_url", "http://localhost:11434"),
        help="Enter the URL to your Ollama server"
    )

    # Conversation history
    st.subheader("Conversation History")
    if st.button("Clear History"):
        st.session_state.messages = []
        st.success("History cleared!")

    # Debug info
    with st.sidebar.expander("πŸ”§ Debug Info"):
        st.write(f"**OLLAMA_HOST**: {st.session_state.ngrok_url}")
        st.write(f"**Selected Model**: {st.session_state.selected_model}")
        st.write(f"Fallback Mode: {'βœ… On' if config.use_fallback else '❌ Off'}")
        st.write(f"Redis Status: {'βœ… Healthy' if check_redis_health() else '⚠️ Unavailable'}")
        st.write(f"Env Detected As: {'☁️ HF Space' if config.is_hf_space else '🏠 Local'}")
        st.write(f"HF Token Set: {'βœ… Yes' if config.hf_token else '❌ No'}")
        
        if st.session_state.last_error:
            st.warning(f"Last Error: {st.session_state.last_error}")

    # Ollama API Call Tracking
    if st.session_state.last_ollama_call_success is not None:
        status_icon = "βœ… Success" if st.session_state.last_ollama_call_success else "❌ Failed"
        st.write(f"Last Ollama Call: {status_icon}")
        st.write(f"At: {st.session_state.last_ollama_call_time}")
        if st.session_state.last_ollama_response_preview:
            st.code(st.session_state.last_ollama_response_preview[:200] + ("..." if len(st.session_state.last_ollama_response_preview) > 200 else ""), language="text")

    # Hugging Face API Call Tracking
    if st.session_state.last_hf_call_success is not None:
        status_icon = "βœ… Success" if st.session_state.last_hf_call_success else "❌ Failed"
        st.write(f"Last HF Call: {status_icon}")
        st.write(f"At: {st.session_state.last_hf_call_time}")
        if st.session_state.last_hf_response_preview:
            st.code(st.session_state.last_hf_response_preview[:200] + ("..." if len(st.session_state.last_hf_response_preview) > 200 else ""), language="text")

    # Manual Refresh Button
    if st.button("πŸ”„ Refresh Ollama Status"):
        from services.ollama_monitor import check_ollama_status
        status = check_ollama_status()
        # Fix for Streamlit version - replace st.toast with compatible function
        status_text = f"Ollama Status: {'Running' if status['running'] else 'Unavailable'}"
        st.sidebar.info(status_text)

# Main chat interface
st.title("🧠 AI Life Coach")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Chat input and send button
col1, col2 = st.columns([4, 1])
with col1:
    user_input = st.text_input(
        "Your message...",
        key="user_message_input",
        placeholder="Type your message here...",
        label_visibility="collapsed"
    )
with col2:
    send_button = st.button("Send", key="send_message_button", use_container_width=True)

if send_button and user_input.strip():
    # Display user message
    with st.chat_message("user"):
        st.markdown(user_input)

    # Add user message to history
    st.session_state.messages.append({"role": "user", "content": user_input})

    # Reset error state
    st.session_state.last_error = ""

    # Get conversation history
    user_session = session_manager.get_session("default_user")
    conversation = user_session.get("conversation", [])
    conversation_history = conversation[-5:]  # Last 5 messages
    conversation_history.append({"role": "user", "content": user_input})

    # Send to backend
    with st.chat_message("assistant"):
        with st.spinner("AI Coach is thinking..."):
            ai_response = None
            backend_used = ""
            error_msg = ""

            # Try Ollama first if not falling back
            if not config.use_fallback:
                try:
                    ai_response = send_to_ollama(
                        user_input, conversation_history,
                        st.session_state.ngrok_url, st.session_state.selected_model
                    )
                    backend_used = "Ollama"
                    # Capture success metadata
                    st.session_state.last_ollama_call_success = True
                    st.session_state.last_ollama_call_time = str(datetime.utcnow())
                    st.session_state.last_ollama_response_preview = ai_response[:200] if ai_response else ""
                except Exception as e:
                    error_msg = f"Ollama error: {str(e)}"
                    # Capture failure metadata
                    st.session_state.last_ollama_call_success = False
                    st.session_state.last_ollama_call_time = str(datetime.utcnow())
                    st.session_state.last_ollama_response_preview = str(e)[:200]

            # Fallback to Hugging Face if not ai_response and config.hf_token
            if not ai_response and config.hf_token:
                try:
                    ai_response = send_to_hf(user_input, conversation_history)
                    backend_used = "Hugging Face"
                    # Capture success metadata
                    st.session_state.last_hf_call_success = True
                    st.session_state.last_hf_call_time = str(datetime.utcnow())
                    st.session_state.last_hf_response_preview = ai_response[:200] if ai_response else ""
                except Exception as e:
                    error_msg = f"Hugging Face error: {str(e)}"
                    # Capture failure metadata
                    st.session_state.last_hf_call_success = False
                    st.session_state.last_hf_call_time = str(datetime.utcnow())
                    st.session_state.last_hf_response_preview = str(e)[:200]

            if ai_response:
                st.markdown(f"{ai_response}")
                # Update conversation history
                conversation.append({"role": "user", "content": user_input})
                conversation.append({"role": "assistant", "content": ai_response})
                # Update session using the correct method
                user_session["conversation"] = conversation
                session_manager.update_session("default_user", user_session)
                # Add assistant response to history
                st.session_state.messages.append({"role": "assistant", "content": ai_response})
            else:
                st.error("Failed to get response from both providers.")
                st.session_state.last_error = error_msg or "No response from either provider"

    # Clear input by forcing rerun
    st.experimental_rerun()