File size: 31,592 Bytes
5720799 86b116d 6015c25 86b116d 0e216c6 ac83e06 89a4312 86b116d 8b21538 86b116d 2665582 857c4c0 ac83e06 73ed159 b5d5e39 758943e 1949ac7 e2ee43d f446f02 86b116d 857c4c0 e9b4a9e fde6c6f ac83e06 d891499 f446f02 0757010 1949ac7 0757010 95e9a8c d891499 0757010 1949ac7 0757010 bf25842 0757010 bf25842 0757010 73ed159 0757010 f750678 d891499 809cf6d d891499 809cf6d 3c74ffa 0757010 1949ac7 0757010 86b116d d891499 809cf6d d891499 1949ac7 d891499 809cf6d 0757010 809cf6d 1949ac7 809cf6d 86b116d 0757010 1949ac7 0757010 ac83e06 0757010 bf25842 1949ac7 0757010 1949ac7 0757010 f750678 0757010 f750678 1949ac7 f750678 0e216c6 809cf6d d891499 809cf6d d891499 809cf6d d891499 809cf6d 0757010 e2ee43d 0757010 809cf6d bf25842 809cf6d b5d5e39 fde6c6f 809cf6d d891499 809cf6d d891499 1949ac7 d891499 809cf6d d891499 809cf6d d891499 809cf6d d891499 809cf6d d891499 809cf6d 0757010 809cf6d 0757010 95e9a8c d891499 bf25842 0757010 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 d891499 bf25842 0757010 bf25842 e9b4a9e bf25842 6419a6b bf25842 d891499 bf25842 809cf6d 1949ac7 d891499 809cf6d d891499 809cf6d 0757010 1949ac7 0757010 1949ac7 0757010 d891499 0757010 f6bf178 0757010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
import streamlit as st
import time
import os
import sys
import json
import asyncio
from datetime import datetime
from pathlib import Path
sys.path.append(str(Path(__file__).parent))
from utils.config import config
from core.llm import send_to_ollama, send_to_hf
from core.session import session_manager
from core.memory import check_redis_health
from core.coordinator import coordinator
from core.errors import translate_error
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
st.set_page_config(page_title="CosmicCat AI Assistant", page_icon="π±", layout="wide")
# Initialize session state safely at the top of app.py
if "messages" not in st.session_state:
st.session_state.messages = []
if "last_error" not in st.session_state:
st.session_state.last_error = ""
if "is_processing" not in st.session_state:
st.session_state.is_processing = False
if "ngrok_url_temp" not in st.session_state:
st.session_state.ngrok_url_temp = st.session_state.get("ngrok_url", "https://7bcc180dffd1.ngrok-free.app")
if "hf_expert_requested" not in st.session_state:
st.session_state.hf_expert_requested = False
if "cosmic_mode" not in st.session_state:
st.session_state.cosmic_mode = True # Default to cosmic mode
# Sidebar layout redesign
with st.sidebar:
st.title("π± CosmicCat AI Assistant")
st.markdown("Your personal AI-powered life development assistant")
# PRIMARY ACTIONS
st.subheader("π¬ Primary Actions")
model_options = {
"Mistral 7B (Local)": "mistral:latest",
"Llama 2 7B (Local)": "llama2:latest",
"OpenChat 3.5 (Local)": "openchat:latest"
}
selected_model_name = st.selectbox(
"Select Model",
options=list(model_options.keys()),
index=0,
key="sidebar_model_select"
)
st.session_state.selected_model = model_options[selected_model_name]
# Toggle for cosmic mode using checkbox instead of toggle
st.session_state.cosmic_mode = st.checkbox("Enable Cosmic Cascade", value=st.session_state.cosmic_mode)
st.divider()
# CONFIGURATION
st.subheader("βοΈ Configuration")
ngrok_url_input = st.text_input(
"Ollama Server URL",
value=st.session_state.ngrok_url_temp,
help="Enter your ngrok URL",
key="sidebar_ngrok_url"
)
if ngrok_url_input != st.session_state.ngrok_url_temp:
st.session_state.ngrok_url_temp = ngrok_url_input
st.success("β
URL updated!")
if st.button("π‘ Test Connection"):
try:
import requests
headers = {
"ngrok-skip-browser-warning": "true",
"User-Agent": "CosmicCat-Test"
}
with st.spinner("Testing connection..."):
response = requests.get(
f"{ngrok_url_input}/api/tags",
headers=headers,
timeout=15
)
if response.status_code == 200:
st.success("β
Connection successful!")
else:
st.error(f"β Failed: {response.status_code}")
except Exception as e:
st.error(f"β Error: {str(e)[:50]}...")
if st.button("ποΈ Clear History"):
st.session_state.messages = []
st.success("History cleared!")
st.divider()
# ADVANCED FEATURES
with st.expander("π Advanced Features", expanded=False):
st.subheader("π System Monitor")
try:
from services.ollama_monitor import check_ollama_status
ollama_status = check_ollama_status()
if ollama_status.get("running"):
st.success("π¦ Ollama: Running")
else:
st.warning("π¦ Ollama: Not running")
except:
st.info("π¦ Ollama: Unknown")
try:
from services.hf_endpoint_monitor import hf_monitor
hf_status = hf_monitor.check_endpoint_status()
if hf_status['available']:
st.success("π€ HF: Available")
else:
st.warning("π€ HF: Not available")
except:
st.info("π€ HF: Unknown")
if check_redis_health():
st.success("πΎ Redis: Connected")
else:
st.error("πΎ Redis: Disconnected")
st.divider()
st.subheader("π€ HF Expert Analysis")
st.markdown("""
**HF Expert Features:**
- Analyzes entire conversation history
- Performs web research when needed
- Provides deep insights and recommendations
- Acts as expert consultant in your conversation
""")
if st.button("π§ Activate HF Expert",
key="activate_hf_expert_sidebar",
help="Send conversation to HF endpoint for deep analysis",
use_container_width=True,
disabled=st.session_state.is_processing):
st.session_state.hf_expert_requested = True
st.divider()
st.subheader("π Debug Info")
# Show current configuration
st.markdown(f"**Environment:** {'HF Space' if config.is_hf_space else 'Local'}")
st.markdown(f"**Model:** {st.session_state.selected_model}")
st.markdown(f"**Ollama URL:** {st.session_state.ngrok_url_temp}")
st.markdown(f"**Cosmic Mode:** {'Enabled' if st.session_state.cosmic_mode else 'Disabled'}")
# Show active features
features = []
if config.hf_token:
features.append("HF Expert")
if os.getenv("TAVILY_API_KEY"):
features.append("Web Search")
if config.openweather_api_key:
features.append("Weather")
st.markdown(f"**Active Features:** {', '.join(features) if features else 'None'}")
# Main interface
st.title("π± CosmicCat AI Assistant")
st.markdown("Ask me anything about personal development, goal setting, or life advice!")
# Consistent message rendering function with cosmic styling
def render_message(role, content, source=None, timestamp=None):
"""Render chat messages with consistent styling"""
with st.chat_message(role):
if source:
if source == "local_kitty":
st.markdown(f"### π± Cosmic Kitten Says:")
elif source == "orbital_station":
st.markdown(f"### π°οΈ Orbital Station Reports:")
elif source == "cosmic_summary":
st.markdown(f"### π Final Cosmic Summary:")
elif source == "error":
st.markdown(f"### β Error:")
elif source == "hf_expert":
st.markdown(f"### π€ HF Expert Analysis:")
else:
st.markdown(f"### {source}")
st.markdown(content)
if timestamp:
st.caption(f"π {timestamp}")
# Display messages
for message in st.session_state.messages:
render_message(
message["role"],
message["content"],
message.get("source"),
message.get("timestamp")
)
# Manual HF Analysis Section
if st.session_state.messages and len(st.session_state.messages) > 0:
st.divider()
# HF Expert Section with enhanced visual indication
with st.expander("π€ HF Expert Analysis", expanded=False):
st.subheader("Deep Conversation Analysis")
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("""
**HF Expert Features:**
- Analyzes entire conversation history
- Performs web research when needed
- Provides deep insights and recommendations
- Acts as expert consultant in your conversation
""")
# Show conversation preview for HF expert
st.markdown("**Conversation Preview for HF Expert:**")
st.markdown("---")
for i, msg in enumerate(st.session_state.messages[-5:]): # Last 5 messages
role = "π€ You" if msg["role"] == "user" else "π€ Assistant"
st.markdown(f"**{role}:** {msg['content'][:100]}{'...' if len(msg['content']) > 100 else ''}")
st.markdown("---")
# Show web search determination
try:
user_session = session_manager.get_session("default_user")
conversation_history = user_session.get("conversation", [])
research_needs = coordinator.determine_web_search_needs(conversation_history)
if research_needs["needs_search"]:
st.info(f"π **Research Needed:** {research_needs['reasoning']}")
else:
st.success("β
No research needed for this conversation")
except Exception as e:
st.warning("β οΈ Could not determine research needs")
with col2:
if st.button("π§ Activate HF Expert",
key="activate_hf_expert",
help="Send conversation to HF endpoint for deep analysis",
use_container_width=True,
disabled=st.session_state.is_processing):
st.session_state.hf_expert_requested = True
# Show HF expert analysis when requested (outside of the expander)
if st.session_state.get("hf_expert_requested", False):
with st.spinner("π§ HF Expert analyzing conversation..."):
try:
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation_history = user_session.get("conversation", [])
# Show what HF expert sees in a separate expander
with st.expander("π HF Expert Input", expanded=False):
st.markdown("**Conversation History Sent to HF Expert:**")
for i, msg in enumerate(conversation_history[-10:]): # Last 10 messages
st.markdown(f"**{msg['role'].capitalize()}:** {msg['content'][:100]}{'...' if len(msg['content']) > 100 else ''}")
# Request HF analysis
hf_analysis = coordinator.manual_hf_analysis(
"default_user",
conversation_history
)
if hf_analysis:
# Display HF expert response with clear indication
with st.chat_message("assistant"):
st.markdown("### π€ HF Expert Analysis")
st.markdown(hf_analysis)
# Add research/web search decisions
research_needs = coordinator.determine_web_search_needs(conversation_history)
if research_needs["needs_search"]:
st.info(f"π **Research Needed:** {research_needs['reasoning']}")
if st.button("π Perform Web Research", key="web_research_button"):
# Perform web search
with st.spinner("π Searching for current information..."):
# Add web search logic here
st.success("β
Web research completed!")
# Add to message history with HF expert tag
st.session_state.messages.append({
"role": "assistant",
"content": hf_analysis,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"source": "hf_expert",
"research_needs": research_needs
})
st.session_state.hf_expert_requested = False
except Exception as e:
user_msg = translate_error(e)
st.error(f"β HF Expert analysis failed: {user_msg}")
st.session_state.hf_expert_requested = False
# Input validation function
def validate_user_input(text):
"""Validate and sanitize user input"""
if not text or not text.strip():
return False, "Input cannot be empty"
if len(text) > 1000:
return False, "Input too long (max 1000 characters)"
# Check for potentially harmful patterns
harmful_patterns = ["<script", "javascript:", "onload=", "onerror="]
if any(pattern in text.lower() for pattern in harmful_patterns):
return False, "Potentially harmful input detected"
return True, text.strip()
# Chat input - FIXED VERSION (moved outside of tabs)
user_input = st.chat_input("Type your message here...", disabled=st.session_state.is_processing)
# Process message when received
if user_input and not st.session_state.is_processing:
# Validate input
is_valid, validated_input = validate_user_input(user_input)
if not is_valid:
st.error(validated_input)
st.session_state.is_processing = False
else:
st.session_state.is_processing = True
# Display user message
with st.chat_message("user"):
st.markdown(validated_input)
# Add to message history - ensure proper format
st.session_state.messages.append({
"role": "user",
"content": validated_input,
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Process AI response
with st.chat_message("assistant"):
response_placeholder = st.empty()
status_placeholder = st.empty()
try:
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation = user_session.get("conversation", [])
conversation_history = conversation[-5:] # Last 5 messages
conversation_history.append({"role": "user", "content": validated_input})
# Check if cosmic mode is enabled
if st.session_state.cosmic_mode:
# Process cosmic cascade response
message_placeholder = st.empty()
status_placeholder = st.empty()
try:
# Get conversation history
user_session = session_manager.get_session("default_user")
conversation_history = user_session.get("conversation", []).copy()
# Stage 1: Local Ollama Response
status_placeholder.info("π± Cosmic Kitten Responding...")
local_response = send_to_ollama(
validated_input,
conversation_history,
st.session_state.ngrok_url_temp,
st.session_state.selected_model
)
if local_response:
with st.chat_message("assistant"):
st.markdown(f"### π± Cosmic Kitten Says:\n{local_response}")
st.session_state.messages.append({
"role": "assistant",
"content": local_response,
"source": "local_kitty",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Stage 2: HF Endpoint Analysis
status_placeholder.info("π°οΈ Beaming Query to Orbital Station...")
if config.hf_token:
hf_response = send_to_hf(validated_input, conversation_history)
if hf_response:
with st.chat_message("assistant"):
st.markdown(f"### π°οΈ Orbital Station Reports:\n{hf_response}")
st.session_state.messages.append({
"role": "assistant",
"content": hf_response,
"source": "orbital_station",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Stage 3: Local Synthesis
status_placeholder.info("π± Cosmic Kitten Synthesizing Wisdom...")
# Update history with both responses
synthesis_history = conversation_history.copy()
synthesis_history.extend([
{"role": "assistant", "content": local_response},
{"role": "assistant", "content": hf_response, "source": "cloud"}
])
synthesis = send_to_ollama(
f"Synthesize these two perspectives:\n1. Local: {local_response}\n2. Cloud: {hf_response}",
synthesis_history,
st.session_state.ngrok_url_temp,
st.session_state.selected_model
)
if synthesis:
with st.chat_message("assistant"):
st.markdown(f"### π Final Cosmic Summary:\n{synthesis}")
st.session_state.messages.append({
"role": "assistant",
"content": synthesis,
"source": "cosmic_summary",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
status_placeholder.success("β¨ Cosmic Cascade Complete!")
except Exception as e:
error_msg = f"π Cosmic disturbance: {str(e)}"
st.error(error_msg)
st.session_state.messages.append({
"role": "assistant",
"content": error_msg,
"source": "error",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
else:
# Traditional processing
# Try Ollama with proper error handling
status_placeholder.info("π¦ Contacting Ollama...")
ai_response = None
try:
ai_response = send_to_ollama(
validated_input,
conversation_history,
st.session_state.ngrok_url_temp,
st.session_state.selected_model
)
if ai_response:
response_placeholder.markdown(ai_response)
status_placeholder.success("β
Response received!")
else:
status_placeholder.warning("β οΈ Empty response from Ollama")
except Exception as ollama_error:
user_msg = translate_error(ollama_error)
status_placeholder.error(f"β οΈ {user_msg}")
# Fallback to HF if available
if config.hf_token and not ai_response:
status_placeholder.info("β‘ Initializing HF Endpoint (2β4 minutes)...")
try:
ai_response = send_to_hf(validated_input, conversation_history)
if ai_response:
response_placeholder.markdown(ai_response)
status_placeholder.success("β
HF response received!")
else:
status_placeholder.error("β No response from HF")
except Exception as hf_error:
user_msg = translate_error(hf_error)
status_placeholder.error(f"β οΈ {user_msg}")
# Save response if successful
if ai_response:
# Update conversation history
conversation.append({"role": "user", "content": validated_input})
conversation.append({"role": "assistant", "content": ai_response})
user_session["conversation"] = conversation
session_manager.update_session("default_user", user_session)
# Add to message history - ensure proper format
st.session_state.messages.append({
"role": "assistant",
"content": ai_response,
"timestamp": datetime.now().strftime("%H:%M:%S")
})
# Add feedback buttons
st.divider()
col1, col2 = st.columns(2)
with col1:
if st.button("π Helpful", key=f"helpful_{len(st.session_state.messages)}"):
st.success("Thanks for your feedback!")
with col2:
if st.button("π Not Helpful", key=f"not_helpful_{len(st.session_state.messages)}"):
st.success("Thanks for your feedback!")
else:
st.session_state.messages.append({
"role": "assistant",
"content": "Sorry, I couldn't process your request. Please try again.",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
except Exception as e:
user_msg = translate_error(e)
response_placeholder.error(f"β οΈ {user_msg}")
st.session_state.messages.append({
"role": "assistant",
"content": f"β οΈ {user_msg}",
"timestamp": datetime.now().strftime("%H:%M:%S")
})
finally:
st.session_state.is_processing = False
time.sleep(0.5) # Brief pause
st.experimental_rerun()
# Add evaluation dashboard tab (separate from chat interface)
st.divider()
tab1, tab2, tab3 = st.tabs(["π¬ Evaluate AI", "π Reports", "βΉοΈ About"])
with tab1:
st.header("π¬ AI Behavior Evaluator")
st.markdown("Run sample prompts to observe AI behavior.")
eval_prompts = [
"What is the capital of France?",
"What day is it today?",
"Tell me about recent climate policy changes.",
"Explain CRISPR gene editing simply.",
"Can vitamin D prevent flu infections?"
]
selected_prompt = st.selectbox("Choose a test prompt:", eval_prompts)
custom_prompt = st.text_input("Or enter your own:", "")
final_prompt = custom_prompt or selected_prompt
if st.button("Evaluate"):
with st.spinner("Running evaluation..."):
start_time = time.time()
# Simulate sending to coordinator
from core.session import session_manager
user_session = session_manager.get_session("eval_user")
history = user_session.get("conversation", [])
try:
ai_response = send_to_ollama(final_prompt, history, st.session_state.ngrok_url_temp, st.session_state.selected_model)
duration = round(time.time() - start_time, 2)
st.success(f"β
Response generated in {duration}s")
st.markdown("**Response:**")
st.write(ai_response)
st.markdown("**Analysis Tags:**")
tags = []
if "today" in final_prompt.lower() or "date" in final_prompt.lower():
tags.append("π
Date Awareness")
if any(word in final_prompt.lower() for word in ["news", "latest", "breaking"]):
tags.append("π Web Search Needed")
if any(word in final_prompt.lower() for word in ["vitamin", "drug", "metformin", "CRISPR"]):
tags.append("𧬠Scientific Knowledge")
st.write(", ".join(tags) if tags else "General Knowledge")
except Exception as e:
st.error(f"Evaluation failed: {translate_error(e)}")
with tab2:
st.header("π Performance Reports")
st.markdown("System performance metrics and usage analytics.")
# System status
st.subheader("System Status")
col1, col2, col3 = st.columns(3)
with col1:
try:
from services.ollama_monitor import check_ollama_status
ollama_status = check_ollama_status()
if ollama_status.get("running"):
st.success("π¦ Ollama: Running")
else:
st.warning("π¦ Ollama: Not running")
except:
st.info("π¦ Ollama: Unknown")
with col2:
try:
from services.hf_endpoint_monitor import hf_monitor
hf_status = hf_monitor.check_endpoint_status()
if hf_status['available']:
st.success("π€ HF: Available")
else:
st.warning("π€ HF: Not available")
except:
st.info("π€ HF: Unknown")
with col3:
if check_redis_health():
st.success("πΎ Redis: Connected")
else:
st.error("πΎ Redis: Disconnected")
# Session statistics
st.subheader("Session Statistics")
try:
user_session = session_manager.get_session("default_user")
conversation = user_session.get("conversation", [])
st.metric("Total Messages", len(conversation))
coord_stats = user_session.get('ai_coordination', {})
if coord_stats:
st.metric("AI Requests Processed", coord_stats.get('requests_processed', 0))
st.metric("Ollama Responses", coord_stats.get('ollama_responses', 0))
st.metric("HF Responses", coord_stats.get('hf_responses', 0))
else:
st.info("No coordination statistics available yet.")
except Exception as e:
st.warning(f"Could not load session statistics: {translate_error(e)}")
# Recent activity
st.subheader("Recent Activity")
try:
recent_activities = coordinator.get_recent_activities("default_user")
if recent_activities and recent_activities.get('last_request'):
st.markdown(f"**Last Request:** {recent_activities['last_request']}")
st.markdown(f"**Requests Processed:** {recent_activities['requests_processed']}")
st.markdown(f"**Ollama Responses:** {recent_activities['ollama_responses']}")
st.markdown(f"**HF Responses:** {recent_activities['hf_responses']}")
else:
st.info("No recent activity recorded.")
except Exception as e:
st.warning(f"Could not load recent activity: {translate_error(e)}")
# Configuration summary
st.subheader("Configuration Summary")
st.markdown(f"**Environment:** {'HF Space' if config.is_hf_space else 'Local'}")
st.markdown(f"**Primary Model:** {config.local_model_name or 'Not set'}")
st.markdown(f"**Ollama Host:** {config.ollama_host or 'Not configured'}")
st.markdown(f"**Cosmic Mode:** {'Enabled' if st.session_state.cosmic_mode else 'Disabled'}")
features = []
if config.use_fallback:
features.append("Fallback Mode")
if config.hf_token:
features.append("HF Deep Analysis")
if os.getenv("TAVILY_API_KEY"):
features.append("Web Search")
if config.openweather_api_key:
features.append("Weather Data")
st.markdown(f"**Active Features:** {', '.join(features) if features else 'None'}")
# Conversation Analytics
st.subheader("π Conversation Analytics")
try:
user_session = session_manager.get_session("default_user")
conversation = user_session.get("conversation", [])
if conversation:
# Analyze conversation patterns
user_messages = [msg for msg in conversation if msg["role"] == "user"]
ai_messages = [msg for msg in conversation if msg["role"] == "assistant"]
col1, col2, col3 = st.columns(3)
col1.metric("Total Exchanges", len(user_messages))
col2.metric("Avg Response Length",
round(sum(len(msg.get("content", "")) for msg in ai_messages) / len(ai_messages)) if ai_messages else 0)
col3.metric("Topics Discussed", len(set(["life", "goal", "health", "career"]) &
set(" ".join([msg.get("content", "") for msg in conversation]).lower().split())))
# Show most common words/topics
all_text = " ".join([msg.get("content", "") for msg in conversation]).lower()
common_words = ["life", "goal", "health", "career", "productivity", "mindfulness"]
relevant_topics = [word for word in common_words if word in all_text]
if relevant_topics:
st.markdown(f"**Detected Topics:** {', '.join(relevant_topics)}")
else:
st.info("No conversation data available yet.")
except Exception as e:
st.warning(f"Could not analyze conversation: {translate_error(e)}")
with tab3:
st.header("βΉοΈ About CosmicCat AI Assistant")
st.markdown("""
The CosmicCat AI Assistant is a sophisticated conversational AI system with the following capabilities:
### π§ Core Features
- **Multi-model coordination**: Combines local Ollama models with cloud-based Hugging Face endpoints
- **Live web search**: Integrates with Tavily API for current information
- **Persistent memory**: Uses Redis for conversation history storage
- **Hierarchical reasoning**: Fast local responses with deep cloud analysis
### π Cosmic Cascade Mode
When enabled, the AI follows a three-stage response pattern:
1. **π± Cosmic Kitten Response**: Immediate local processing
2. **π°οΈ Orbital Station Analysis**: Deep cloud-based analysis
3. **π Final Synthesis**: Unified response combining both perspectives
### π οΈ Technical Architecture
- **Primary model**: Ollama (local processing for fast responses)
- **Secondary model**: Hugging Face Inference API (deep analysis)
- **External data**: Web search and weather data
- **Memory system**: Redis-based session management
### π Evaluation Tools
- Behavior testing with sample prompts
- Performance metrics and analytics
""")
|