File size: 2,942 Bytes
dafbfa4
ff54bae
b717fcf
 
dafbfa4
981a2dd
b717fcf
 
 
 
 
 
 
 
981a2dd
dafbfa4
 
 
 
 
 
 
 
981a2dd
dafbfa4
 
 
 
 
ff54bae
dafbfa4
 
b717fcf
dafbfa4
 
 
b717fcf
 
981a2dd
b717fcf
ff54bae
 
 
 
981a2dd
ff54bae
 
b717fcf
 
ff54bae
b717fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff54bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b717fcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
from threading import Thread
import random

# Local model setup πŸ€–
model_name = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    load_in_4bit=True  # Reduces VRAM usage
)

# Safety tools πŸ›‘οΈ
BLOCKED_WORDS = ["violence", "hate", "gun", "personal"]
SAFE_IDEAS = [
    "Design a robot to clean parks 🌳",
    "Code a game about recycling ♻️",
    "Plan an AI tool for school safety 🚸"
]
safety_checker = pipeline("text-classification", model="unitary/toxic-bert")

def is_safe(text):
    text = text.lower()
    if any(bad_word in text for bad_word in BLOCKED_WORDS):
        return False
    result = safety_checker(text)[0]
    return not (result["label"] == "toxic" and result["score"] > 0.7)

def respond(message, history, system_message, max_tokens, temperature, top_p):
    # Safety check first πŸ”’
    if not is_safe(message):
        return f"🚫 Let's focus on positive projects! Try: {random.choice(SAFE_IDEAS)}"
    
    # Prepare chat history
    messages = [{"role": "system", "content": system_message}]
    
    for user_msg, bot_msg in history[-5:]:  # Keep last 5 exchanges
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})
    
    messages.append({"role": "user", "content": message})
    
    # Tokenize and prepare streaming
    inputs = tokenizer.apply_chat_template(
        messages,
        return_tensors="pt"
    ).to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
    generation_kwargs = {
        "inputs": inputs,
        "max_new_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "streamer": streamer
    }
    
    # Start generation in thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Stream output
    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        yield partial_message

with gr.Blocks() as demo:
    gr.Markdown("# πŸ€– REACT Ethical AI Lab")
    gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox("You help students create ethical AI projects.", label="Guidelines"),
            gr.Slider(128, 1024, value=512, label="Max Response Length"),
            gr.Slider(0.1, 1.0, value=0.3, label="Creativity Level"),
            gr.Slider(0.7, 1.0, value=0.85, label="Focus Level")
        ],
        examples=[
            ["How to build a robot that plants trees?"],
            ["Python code for a pollution sensor"]
        ]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")