Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline | |
| from threading import Thread | |
| import random | |
| # Local model setup π€ | |
| model_name = "HuggingFaceH4/zephyr-7b-beta" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map="auto", | |
| load_in_4bit=True # Reduces VRAM usage | |
| ) | |
| # Safety tools π‘οΈ | |
| BLOCKED_WORDS = ["violence", "hate", "gun", "personal"] | |
| SAFE_IDEAS = [ | |
| "Design a robot to clean parks π³", | |
| "Code a game about recycling β»οΈ", | |
| "Plan an AI tool for school safety πΈ" | |
| ] | |
| safety_checker = pipeline("text-classification", model="unitary/toxic-bert") | |
| def is_safe(text): | |
| text = text.lower() | |
| if any(bad_word in text for bad_word in BLOCKED_WORDS): | |
| return False | |
| result = safety_checker(text)[0] | |
| return not (result["label"] == "toxic" and result["score"] > 0.7) | |
| def respond(message, history, system_message, max_tokens, temperature, top_p): | |
| # Safety check first π | |
| if not is_safe(message): | |
| return f"π« Let's focus on positive projects! Try: {random.choice(SAFE_IDEAS)}" | |
| # Prepare chat history | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_msg, bot_msg in history[-5:]: # Keep last 5 exchanges | |
| if user_msg: | |
| messages.append({"role": "user", "content": user_msg}) | |
| if bot_msg: | |
| messages.append({"role": "assistant", "content": bot_msg}) | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize and prepare streaming | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| return_tensors="pt" | |
| ).to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True) | |
| generation_kwargs = { | |
| "inputs": inputs, | |
| "max_new_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "streamer": streamer | |
| } | |
| # Start generation in thread | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| # Stream output | |
| partial_message = "" | |
| for new_token in streamer: | |
| partial_message += new_token | |
| yield partial_message | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# π€ REACT Ethical AI Lab") | |
| gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox("You help students create ethical AI projects.", label="Guidelines"), | |
| gr.Slider(128, 1024, value=512, label="Max Response Length"), | |
| gr.Slider(0.1, 1.0, value=0.3, label="Creativity Level"), | |
| gr.Slider(0.7, 1.0, value=0.85, label="Focus Level") | |
| ], | |
| examples=[ | |
| ["How to build a robot that plants trees?"], | |
| ["Python code for a pollution sensor"] | |
| ] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0") |