Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Added util functions
Browse files
    	
        util.py
    ADDED
    
    | @@ -0,0 +1,136 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from matplotlib import pyplot as plt
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            import os
         | 
| 5 | 
            +
            import dlib
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            import numpy as np
         | 
| 8 | 
            +
            import scipy
         | 
| 9 | 
            +
            import scipy.ndimage
         | 
| 10 | 
            +
            import torchvision.transforms as transforms
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            def display_image(image, size=None, mode='nearest', unnorm=False, title=''):
         | 
| 13 | 
            +
                # image is [3,h,w] or [1,3,h,w] tensor [0,1]
         | 
| 14 | 
            +
                if not isinstance(image, torch.Tensor):
         | 
| 15 | 
            +
                    image = transforms.ToTensor()(image).unsqueeze(0)
         | 
| 16 | 
            +
                if image.is_cuda:
         | 
| 17 | 
            +
                    image = image.cpu()
         | 
| 18 | 
            +
                if size is not None and image.size(-1) != size:
         | 
| 19 | 
            +
                    image = F.interpolate(image, size=(size,size), mode=mode)
         | 
| 20 | 
            +
                if image.dim() == 4:
         | 
| 21 | 
            +
                    image = image[0]
         | 
| 22 | 
            +
                image = image.permute(1, 2, 0).detach().numpy()
         | 
| 23 | 
            +
                plt.figure()
         | 
| 24 | 
            +
                plt.title(title)
         | 
| 25 | 
            +
                plt.axis('off')
         | 
| 26 | 
            +
                plt.imshow(image)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            def get_landmark(filepath, predictor):
         | 
| 29 | 
            +
                """get landmark with dlib
         | 
| 30 | 
            +
                :return: np.array shape=(68, 2)
         | 
| 31 | 
            +
                """
         | 
| 32 | 
            +
                detector = dlib.get_frontal_face_detector()
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                img = dlib.load_rgb_image(filepath)
         | 
| 35 | 
            +
                dets = detector(img, 1)
         | 
| 36 | 
            +
                assert len(dets) > 0, "Face not detected, try another face image"
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                for k, d in enumerate(dets):
         | 
| 39 | 
            +
                    shape = predictor(img, d)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                t = list(shape.parts())
         | 
| 42 | 
            +
                a = []
         | 
| 43 | 
            +
                for tt in t:
         | 
| 44 | 
            +
                    a.append([tt.x, tt.y])
         | 
| 45 | 
            +
                lm = np.array(a)
         | 
| 46 | 
            +
                return lm
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            def align_face(filepath, predictor, output_size=256, transform_size=1024, enable_padding=True):
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
                :param filepath: str
         | 
| 52 | 
            +
                :return: PIL Image
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
                lm = get_landmark(filepath, predictor)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                lm_chin = lm[0: 17]  # left-right
         | 
| 57 | 
            +
                lm_eyebrow_left = lm[17: 22]  # left-right
         | 
| 58 | 
            +
                lm_eyebrow_right = lm[22: 27]  # left-right
         | 
| 59 | 
            +
                lm_nose = lm[27: 31]  # top-down
         | 
| 60 | 
            +
                lm_nostrils = lm[31: 36]  # top-down
         | 
| 61 | 
            +
                lm_eye_left = lm[36: 42]  # left-clockwise
         | 
| 62 | 
            +
                lm_eye_right = lm[42: 48]  # left-clockwise
         | 
| 63 | 
            +
                lm_mouth_outer = lm[48: 60]  # left-clockwise
         | 
| 64 | 
            +
                lm_mouth_inner = lm[60: 68]  # left-clockwise
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                # Calculate auxiliary vectors.
         | 
| 67 | 
            +
                eye_left = np.mean(lm_eye_left, axis=0)
         | 
| 68 | 
            +
                eye_right = np.mean(lm_eye_right, axis=0)
         | 
| 69 | 
            +
                eye_avg = (eye_left + eye_right) * 0.5
         | 
| 70 | 
            +
                eye_to_eye = eye_right - eye_left
         | 
| 71 | 
            +
                mouth_left = lm_mouth_outer[0]
         | 
| 72 | 
            +
                mouth_right = lm_mouth_outer[6]
         | 
| 73 | 
            +
                mouth_avg = (mouth_left + mouth_right) * 0.5
         | 
| 74 | 
            +
                eye_to_mouth = mouth_avg - eye_avg
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                # Choose oriented crop rectangle.
         | 
| 77 | 
            +
                x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
         | 
| 78 | 
            +
                x /= np.hypot(*x)
         | 
| 79 | 
            +
                x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
         | 
| 80 | 
            +
                y = np.flipud(x) * [-1, 1]
         | 
| 81 | 
            +
                c = eye_avg + eye_to_mouth * 0.1
         | 
| 82 | 
            +
                quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
         | 
| 83 | 
            +
                qsize = np.hypot(*x) * 2
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                # read image
         | 
| 86 | 
            +
                img = Image.open(filepath)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                transform_size = output_size
         | 
| 89 | 
            +
                enable_padding = True
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                # Shrink.
         | 
| 92 | 
            +
                shrink = int(np.floor(qsize / output_size * 0.5))
         | 
| 93 | 
            +
                if shrink > 1:
         | 
| 94 | 
            +
                    rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
         | 
| 95 | 
            +
                    img = img.resize(rsize, Image.ANTIALIAS)
         | 
| 96 | 
            +
                    quad /= shrink
         | 
| 97 | 
            +
                    qsize /= shrink
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                # Crop.
         | 
| 100 | 
            +
                border = max(int(np.rint(qsize * 0.1)), 3)
         | 
| 101 | 
            +
                crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
         | 
| 102 | 
            +
                        int(np.ceil(max(quad[:, 1]))))
         | 
| 103 | 
            +
                crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
         | 
| 104 | 
            +
                        min(crop[3] + border, img.size[1]))
         | 
| 105 | 
            +
                if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
         | 
| 106 | 
            +
                    img = img.crop(crop)
         | 
| 107 | 
            +
                    quad -= crop[0:2]
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                # Pad.
         | 
| 110 | 
            +
                pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
         | 
| 111 | 
            +
                       int(np.ceil(max(quad[:, 1]))))
         | 
| 112 | 
            +
                pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
         | 
| 113 | 
            +
                       max(pad[3] - img.size[1] + border, 0))
         | 
| 114 | 
            +
                if enable_padding and max(pad) > border - 4:
         | 
| 115 | 
            +
                    pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
         | 
| 116 | 
            +
                    img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
         | 
| 117 | 
            +
                    h, w, _ = img.shape
         | 
| 118 | 
            +
                    y, x, _ = np.ogrid[:h, :w, :1]
         | 
| 119 | 
            +
                    mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
         | 
| 120 | 
            +
                                      1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
         | 
| 121 | 
            +
                    blur = qsize * 0.02
         | 
| 122 | 
            +
                    img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
         | 
| 123 | 
            +
                    img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
         | 
| 124 | 
            +
                    img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
         | 
| 125 | 
            +
                    quad += pad[:2]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                # Transform.
         | 
| 128 | 
            +
                img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
         | 
| 129 | 
            +
                if output_size < transform_size:
         | 
| 130 | 
            +
                    img = img.resize((output_size, output_size), Image.ANTIALIAS)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                # Return aligned image.
         | 
| 133 | 
            +
                return img
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            def strip_path_extension(path):
         | 
| 136 | 
            +
               return  os.path.splitext(path)[0]
         | 
