Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import PIL | |
| import base64 | |
| import io | |
| import torch | |
| # SSD-1B | |
| #from diffusers import LCMScheduler, AutoPipelineForText2Image | |
| # SDXL | |
| from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) | |
| SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') | |
| #device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
| if torch.cuda.is_available(): | |
| #pipe = AutoPipelineForText2Image.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16") | |
| #pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| #pipe.to("cuda") | |
| # load and fuse | |
| #pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b") | |
| #pipe.fuse_lora() | |
| unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16") | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.to('cuda') | |
| else: | |
| pipe = None | |
| def generate(prompt: str, | |
| negative_prompt: str = '', | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 0.0, | |
| num_inference_steps: int = 4, | |
| secret_token: str = '') -> PIL.Image.Image: | |
| if secret_token != SECRET_TOKEN: | |
| raise gr.Error( | |
| f'Invalid secret token. Please fork the original space if you want to use it for yourself.') | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe(prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| output_type='pil').images[0] | |
| return image | |
| with gr.Blocks() as demo: | |
| gr.HTML(""" | |
| <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;"> | |
| <div style="text-align: center; color: black;"> | |
| <p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p> | |
| <p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p> | |
| </div> | |
| </div>""") | |
| secret_token = gr.Text( | |
| label='Secret Token', | |
| max_lines=1, | |
| placeholder='Enter your secret token', | |
| ) | |
| prompt = gr.Text( | |
| label='Prompt', | |
| show_label=False, | |
| max_lines=1, | |
| placeholder='Enter your prompt', | |
| container=False, | |
| ) | |
| result = gr.Image(label='Result', show_label=False) | |
| negative_prompt = gr.Text( | |
| label='Negative prompt', | |
| max_lines=1, | |
| placeholder='Enter a negative prompt', | |
| visible=True, | |
| ) | |
| seed = gr.Slider(label='Seed', | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0) | |
| width = gr.Slider( | |
| label='Width', | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label='Height', | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label='Guidance scale', | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=0.0) | |
| num_inference_steps = gr.Slider( | |
| label='Number of inference steps', | |
| minimum=1, | |
| maximum=8, | |
| step=1, | |
| value=4) | |
| inputs = [ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| secret_token, | |
| ] | |
| prompt.submit( | |
| fn=generate, | |
| inputs=inputs, | |
| outputs=result, | |
| api_name='run', | |
| ) | |
| demo.queue(max_size=32).launch() |