File size: 12,187 Bytes
51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 36971a5 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 7d6dbd8 51742f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import time
import gradio as gr
from transformers import pipeline
from huggingface_hub import InferenceClient
from typing import List, Dict, Tuple, Any, Optional
from diffusers import AutoPipelineForText2Image
import torch
# Article Analysis Constants
MAX_CHAR = 8000
NER_NUM_ROWS = 10
# Model Constants
SUMM_MODEL_ID = "sshleifer/distilbart-cnn-12-6"
SENTIMENT_MODEL_ID = "ahmedrachid/FinancialBERT-Sentiment-Analysis"
FINCLS_MODEL_ID = "nickmuchi/distilroberta-finetuned-financial-text-classification"
NER_MODEL_ID = "dslim/bert-base-NER"
CHAT_MODEL_ID = "openai/gpt-oss-20b"
IMAGE_MODEL_ID = "stabilityai/sd-turbo"
_summ_pipe = None
_sentiment_pipe = None
_fincls_pipe = None
_ner_pipe = None
_img_pipe_cpu = None
# Image Constants
IMG_STEPS = 2
IMG_GUIDANCE = 0.5
IMG_WIDTH = 512
IMG_HEIGHT = 512
# Chat Constants
CHAT_MAX_TOKENS = 512
CHAT_TEMPERATURE = 0.7
CHAT_TOP_P = 0.95
CHAT_SYSTEM_PROMPT = ("\nYou are assisting with analysis of a financial news article."
+ "\nBe clear, cite facts from context, and avoid investment advice."
+ "\nUse the provided ARTICLE as your primary context."
+ "\nIf the user asks about something not in context, say what you do/don't know."
)
DEVICE_CPU = -1
# Assignment 4 Pipelines
def _get_summ_pipe():
global _summ_pipe
if _summ_pipe is None:
_summ_pipe = pipeline(
"summarization",
model=SUMM_MODEL_ID,
device=DEVICE_CPU,
)
return _summ_pipe
def _get_sentiment_pipe():
global _sentiment_pipe
if _sentiment_pipe is None:
_sentiment_pipe = pipeline(
"text-classification",
model=SENTIMENT_MODEL_ID,
truncation=True,
device=DEVICE_CPU,
)
return _sentiment_pipe
def _get_fincls_pipe():
global _fincls_pipe
if _fincls_pipe is None:
_fincls_pipe = pipeline(
"text-classification",
model=FINCLS_MODEL_ID,
truncation=True,
return_all_scores=True,
device=DEVICE_CPU,
)
return _fincls_pipe
def _get_ner_pipe():
global _ner_pipe
if _ner_pipe is None:
_ner_pipe = pipeline(
"token-classification",
model=NER_MODEL_ID,
aggregation_strategy="simple",
device=DEVICE_CPU,
)
return _ner_pipe
# Image Generation
# Return a plain string token from LoginButton value.
def _hf_token_str(hf_token):
if hf_token is None:
return None
if isinstance(hf_token, str):
return hf_token or None
# gr.OAuthToken-like object
if hasattr(hf_token, "token"):
return hf_token.token
# dict {"token": "..."}
if isinstance(hf_token, dict):
return hf_token.get("token")
return None
def _get_img_pipe_cpu():
global _img_pipe_cpu
if _img_pipe_cpu is None:
pipe = AutoPipelineForText2Image.from_pretrained(
IMAGE_MODEL_ID,
torch_dtype=torch.float32,
use_safetensors=True,
)
pipe.to("cpu")
for fn in ("enable_attention_slicing", "enable_vae_slicing"):
try:
getattr(pipe, fn)()
except Exception:
pass
_img_pipe_cpu = pipe
return _img_pipe_cpu
def _try_cloud_text2image(prompt: str, hf_token: Optional[gr.OAuthToken]):
tok = getattr(hf_token, "token", None) if hf_token else None
if not tok:
return None
try:
client = InferenceClient(token=tok)
return client.text_to_image(prompt, model=IMAGE_MODEL_ID)
except Exception:
return None
# Analysis helpers
def _normalize_text(text: str, max_len: int = MAX_CHAR) -> str:
return (text or "").strip()[:max_len]
def run_summary(text: str) -> str:
try:
txt = _normalize_text(text, MAX_CHAR)
if not txt:
return ""
sp = _get_summ_pipe()
out = sp(txt[:3000], max_length=160, min_length=48, do_sample=False)
return out[0]["summary_text"].strip() if out else ""
except Exception as e:
print("Summary error:", e)
return ""
def run_text_nlp(text: str) -> Tuple[str, float, str, float]:
try:
txt = _normalize_text(text)
if not txt:
return "", 0.0, "", 0.0
sp = _get_sentiment_pipe()
fp = _get_fincls_pipe()
s_pred = sp(txt)[0]
dist = fp(txt)[0]
top = max(dist, key=lambda d: d["score"]) if dist else {"label": "", "score": 0.0}
return (
s_pred.get("label", ""),
float(s_pred.get("score", 0.0)),
top.get("label", ""),
float(top.get("score", 0.0)),
)
except Exception as e:
print("Text NLP error:", e)
return "Error", 0.0, "Error", 0.0
def run_ner_rows(text: str, limit: int = NER_NUM_ROWS) -> List[List[str]]:
try:
txt = _normalize_text(text, MAX_CHAR)
if not txt:
return []
ner = _get_ner_pipe()
ents = ner(txt)
rows = [
[e.get("entity_group", ""), e.get("word", ""), f"{float(e.get('score', 0.0)):.2f}"]
for e in ents
]
return rows[:limit]
except Exception as e:
print("NER error:", e)
return [["Error", str(e), "0.00"]]
# Chat helpers
def build_context_block(article: str, analysis: Dict[str, Any]) -> str:
parts = []
if article:
parts.append(f"ARTICLE (truncated):\n{article[:MAX_CHAR]}")
if analysis:
parts.append(
"ANALYSIS SUMMARY:\n"
f"- Sentiment: {analysis.get('sentiment')} ({analysis.get('sentiment_score'):.2f})\n"
f"- Financial stance: {analysis.get('category')} ({analysis.get('category_score'):.2f})"
)
if analysis.get("summary"):
parts.append(f"- Auto Summary: {analysis['summary']}")
ents = analysis.get("entities", [])
if ents:
ent_str = ", ".join({r[1] for r in ents[:40]})
parts.append(f"- Top entities: {ent_str}")
return "\n\n".join(parts)
def _warn_if_no_token(hf_token: Optional[gr.OAuthToken]) -> str:
if not hf_token or not getattr(hf_token, "token", None):
return "\nYou are not logged in to Hugging Face. Click **Login** (left sidebar) for better reliability.\n\n"
return ""
def respond_chat(
message: str,
history: List[Dict[str, str]],
article_text: str,
analysis: Dict[str, Any],
hf_token: gr.OAuthToken,
_profile,
):
tok = _hf_token_str(hf_token)
login_notice = _warn_if_no_token(hf_token)
client = InferenceClient(
token=tok,
model=CHAT_MODEL_ID
)
context_block = build_context_block(article_text or "", analysis or {})
sys = (CHAT_SYSTEM_PROMPT)
messages = [
{"role": "system", "content": sys},
{"role": "system", "content": context_block},
*history,
{"role": "user", "content": message},
]
response = login_notice
try:
stream = client.chat_completion(
messages,
max_tokens=CHAT_MAX_TOKENS,
stream=True,
temperature=CHAT_TEMPERATURE,
top_p=CHAT_TOP_P,
)
for chunk in stream:
choices = getattr(chunk, "choices", [])
piece = ""
if choices and getattr(choices[0], "delta", None) and choices[0].delta.content:
piece = choices[0].delta.content
response += piece
yield response
except Exception as e:
response += (
f"\nChat request failed for model `{CHAT_MODEL_ID}`.\n"
f"Error: {e}\n"
)
yield response
# Image helpers
def generate_image(prompt, width, height, hf_token, *args):
import traceback
t0 = time.time()
prompt = (prompt or "").strip()
if not prompt:
return None, "Provide a prompt."
# 1) Cloud first (shared GPU)
try:
img = _try_cloud_text2image(prompt, hf_token)
if img is not None:
return img, f"{time.time()-t0:.2f}s"
except Exception as e:
print("Cloud image error:", e)
traceback.print_exc()
# 2) CPU fallback
try:
pipe = _get_img_pipe_cpu()
width, height = int(width), int(height)
out = pipe(
prompt=prompt,
num_inference_steps=IMG_STEPS,
guidance_scale=IMG_GUIDANCE,
width=width,
height=height,
)
img = out.images[0]
return img, f"{time.time()-t0:.2f}s | steps={IMG_STEPS}, g={IMG_GUIDANCE}"
except Exception as e:
print("CPU image error:", e)
traceback.print_exc()
return None, f"Generation failed: {e}"
# Gradio UI
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("**ARIN 460 Final — Financial News Multi-Model**")
article_state = gr.State("")
analysis_state = gr.State({})
with gr.Sidebar():
login_btn = gr.LoginButton()
gr.Markdown("**Workflow**\n1) Input\n2) Analysis (Assignment 4)\n3) Chat\n4) Image")
with gr.Tabs():
with gr.Tab("Input"):
txt_in = gr.Textbox(lines=12, label="Article text")
analyze_btn = gr.Button("Analyze", variant="primary")
run_status = gr.Markdown()
with gr.Tab("Text Analysis"):
summary_box = gr.Textbox(label="Summary", lines=4, interactive=False)
sent_lbl = gr.Textbox(label="Sentiment", interactive=False)
sent_score = gr.Number(label="Sentiment score", precision=3, interactive=False)
fin_lbl = gr.Textbox(label="Financial Category", interactive=False)
fin_score = gr.Number(label="Category score", precision=3, interactive=False)
ta_status = gr.Markdown()
with gr.Tab("NER"):
ner_out = gr.Dataframe(headers=["entity", "text", "score"],
datatype=["str", "str", "str"], interactive=False)
ner_status = gr.Markdown()
with gr.Tab("Chat"):
chat = gr.ChatInterface(
respond_chat,
type="messages",
additional_inputs=[
article_state, analysis_state, login_btn
],
)
chat.chatbot.height = 400
with gr.Tab("Image"):
img_prompt = gr.Textbox(label="Prompt", lines=3)
width_slider = gr.Slider(256, 768, value=IMG_WIDTH, step=64, label="Width")
height_slider = gr.Slider(256, 768, value=IMG_HEIGHT, step=64, label="Height")
gen_btn = gr.Button("Generate Image", variant="primary")
image_out = gr.Image(label="Result", type="pil")
gen_status = gr.Markdown()
gen_btn.click(
generate_image,
inputs=[img_prompt, width_slider, height_slider, login_btn],
outputs=[image_out, gen_status]
)
def _analyze_all(text):
t0 = time.time()
summ = run_summary(text)
s_lbl, s_score, c_lbl, c_score = run_text_nlp(text)
ner_rows = run_ner_rows(text)
dt = time.time() - t0
analysis = {
"summary": summ,
"sentiment": s_lbl,
"sentiment_score": s_score,
"category": c_lbl,
"category_score": c_score,
"entities": ner_rows,
}
return (
f"Processed in **{dt:.2f}s**.",
summ, s_lbl, s_score, c_lbl, c_score, f"Updated at {time.strftime('%H:%M:%S')}",
ner_rows, f"Extracted {len(ner_rows)} entities.",
text, analysis
)
# Analyze button
analyze_btn.click(lambda: gr.update(value="Analyzing...", interactive=False), [], [analyze_btn]) \
.then(_analyze_all, inputs=[txt_in],
outputs=[run_status, summary_box, sent_lbl, sent_score, fin_lbl, fin_score,
ta_status, ner_out, ner_status, article_state, analysis_state]) \
.then(lambda: gr.update(value="Analyze", interactive=True), [], [analyze_btn])
if __name__ == "__main__":
demo.launch() |