Spaces:
Sleeping
Sleeping
File size: 6,977 Bytes
8c269dc b64c7e2 960e946 b64c7e2 73f74f6 8c269dc b64c7e2 73f74f6 b64c7e2 960e946 b64c7e2 66bfc35 960e946 66bfc35 b64c7e2 66bfc35 960e946 73f74f6 960e946 b64c7e2 73f74f6 b64c7e2 51d5738 73f74f6 b64c7e2 73f74f6 b64c7e2 960e946 73f74f6 73cd47f 73f74f6 960e946 73f74f6 960e946 73cd47f 73f74f6 960e946 b64c7e2 8c269dc 960e946 b64c7e2 66bfc35 8c269dc 66bfc35 73f74f6 66bfc35 b64c7e2 73f74f6 b64c7e2 960e946 b64c7e2 8c269dc 73f74f6 73cd47f 960e946 73f74f6 b64c7e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from dotenv import load_dotenv, find_dotenv
import os
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from langchain_community.tools.google_search.tool import GoogleSearchAPIWrapper
from langchain_tavily import TavilySearch
from langchain_community.document_loaders import AsyncHtmlLoader
from langchain.tools import tool
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents import AgentExecutor, create_tool_calling_agent
from csv_cache import CSVSCache
from prompt import get_prompt
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from enum import Enum
from langchain_core.tools import Tool
import re
# --- Define Tools ---
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract b from a."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide a by b, error on zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Compute a mod b."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia and return up to 2 documents."""
docs = WikipediaLoader(query=query, load_max_docs=2).load()
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content}" for d in docs]
return {"wiki_results": "\n---\n".join(results)}
@tool
def arxiv_search(query: str) -> dict:
"""Search Arxiv and return up to 3 docs."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
results = [f"<Document source=\"{d.metadata['source']}\" page=\"{d.metadata.get('page','')}\"/>\n{d.page_content[:1000]}" for d in docs]
return {"arxiv_results": "\n---\n".join(results)}
class LLMProvider(Enum):
"""
An Enum to represent the different LLM providers and their
corresponding environment variable names for API keys.
"""
HUGGINGFACE = ("HuggingFace", "HF_TOKEN")
HUGGINGFACE_LLAMA = ("HUGGINGFACE_LLAMA", "HF_TOKEN")
GOOGLE_GEMINI = ("Google Gemini", "GOOGLE_API_KEY")
class Model:
def __init__(self, provider: LLMProvider = LLMProvider.HUGGINGFACE):
load_dotenv(find_dotenv())
self.system_prompt = get_prompt()
print(f"system_prompt: {self.system_prompt}")
self.provider = provider
self.agent_executor = self.setup_model()
def get_answer(self, question: str) -> str:
try:
result = self.agent_executor.invoke({"input": question})
except BaseException as e:
print(f"An error occurred: {e}")
result = {"FINAL_ANSWER":"ERROR"}
# The final answer is typically in the 'output' key of the result dictionary
final_answer = result['output']
pattern = r'FINAL_ANSWER:"(.*?)"'
match = re.search(pattern, final_answer, re.DOTALL)
if match:
final_answer_value = match.group(1)
print(f"The extracted FINAL_ANSWER is: {final_answer_value}")
else:
print("ERROR: Pattern not found.: {r}")
final_answer_value = "ERROR"
return final_answer_value
def get_chat_with_tools(self, provider: LLMProvider, tools):
api_token = os.getenv(provider.value[1])
if not api_token:
raise ValueError(
f"API key for {provider.value[0]} not found. "
f"Please set the '{provider.value[1]}' environment variable."
)
if provider == LLMProvider.HUGGINGFACE:
llm = HuggingFaceEndpoint(
repo_id="Qwen/Qwen3-Next-80B-A3B-Thinking",
huggingfacehub_api_token=api_token,
temperature=0
)
return ChatHuggingFace(llm=llm).bind_tools(tools)
if provider == LLMProvider.HUGGINGFACE_LLAMA:
llm = HuggingFaceEndpoint(
repo_id="meta-llama/Llama-3.3-70B-Instruct",
huggingfacehub_api_token=api_token,
temperature=0
)
return ChatHuggingFace(llm=llm).bind_tools(tools)
elif provider == LLMProvider.GOOGLE_GEMINI:
chat = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
temperature=0
)
return chat.bind_tools(tools)
else:
raise ValueError(f"Unknown LLM provider: {provider}")
def setup_model(self):
tavily_search_tool = TavilySearch(
api_key=os.getenv("TAVILY_API_KEY"),
max_results=5,
topic="general",
)
# # Define a tool for the agent to use
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
tavily_search_tool,
arxiv_search,
]
chat = self.get_chat_with_tools(self.provider, tools)
# Create the ReAct prompt template
prompt = ChatPromptTemplate.from_messages(
[
("system", self.system_prompt), # Use the new, detailed ReAct prompt
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
# Create the agent
agent = create_tool_calling_agent(chat, tools, prompt)
# Create the agent executor
return AgentExecutor(agent=agent, tools=tools, verbose=True, handle_parsing_errors=True)
def update_mode(model):
csv = CSVSCache()
df = csv.get_all_entries()
# Loop over the rows using iterrows() for clear, row-by-row logic.
i = 0
for index, row in df.iterrows():
if row['answer'] == 'unknown':
question = row['question']
print(f"Found unknown answer for question: '{question}'")
# Call the provided LLM function to get the new answer.
llm_response = model.get_answer(question)
# Update the DataFrame at the specific row and column.
# We use .at for efficient single-cell updates.
df.at[index, 'answer'] = llm_response
print(f"Updated with new answer: '{llm_response}'")
if index > 20:
break
print("\nProcessing complete.")
csv.df = df
csv._save_cache()
def main():
load_dotenv(find_dotenv())
csv = CSVSCache()
df = csv.get_all_entries()
model = Model(LLMProvider.HUGGINGFACE_LLAMA)
#update_mode(model)
test_questions = [0, 6, 10, 12, 15]
for row in test_questions:
response = model.get_answer(df.iloc[row]['question'])
print(f"the output is: {response}")
if __name__ == "__main__":
main()
|