Spaces:
Sleeping
Sleeping
| # Example of how to integrate the granite_model.py into your main app.py | |
| # At the top of your app.py, add this import: | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| pipe = pipeline("text-generation", model="ibm-granite/granite-3.3-8b-instruct") | |
| messages = [ | |
| {"role": "user", "content": "Who are you?"}, | |
| ] | |
| pipe(messages) | |
| try: | |
| from granite_model import GraniteModelIntegration | |
| GRANITE_AVAILABLE = True | |
| except ImportError: | |
| GRANITE_AVAILABLE = False | |
| logger.warning("granite_model.py not found. Granite features will be disabled.") | |
| # In your AdvancedDocumentSummarizer.__init__ method, add: | |
| def __init__(self): | |
| self.summarizer = None | |
| self.sentiment_analyzer = None | |
| self.granite_integration = None # Add this line | |
| self.cache = {} | |
| # Initialize AI models | |
| if TRANSFORMERS_AVAILABLE: | |
| self._initialize_ai_models() | |
| # Initialize Granite integration | |
| if GRANITE_AVAILABLE: | |
| try: | |
| self.granite_integration = GraniteModelIntegration() | |
| logger.info(f"Granite integration status: {'Available' if self.granite_integration.is_available() else 'Not Available'}") | |
| except Exception as e: | |
| logger.warning(f"Failed to initialize Granite integration: {e}") | |
| # Initialize sentiment analyzer | |
| if NLTK_AVAILABLE: | |
| try: | |
| self.sentiment_analyzer = SentimentIntensityAnalyzer() | |
| except Exception as e: | |
| logger.warning(f"Failed to initialize sentiment analyzer: {e}") | |
| # Add these methods to your AdvancedDocumentSummarizer class: | |
| def granite_enhanced_summary(self, text: str, summary_type: str = "medium") -> str: | |
| """Generate enhanced summary using Granite model""" | |
| if not (self.granite_integration and self.granite_integration.is_available()): | |
| return self.advanced_extractive_summary(text) | |
| return self.granite_integration.generate_summary(text, summary_type) | |
| def granite_analyze_document(self, text: str) -> Dict: | |
| """Use Granite model for advanced document analysis""" | |
| if not (self.granite_integration and self.granite_integration.is_available()): | |
| return {'analysis_available': False} | |
| result = self.granite_integration.analyze_document(text) | |
| return { | |
| 'granite_analysis': result.get('analysis', 'Analysis failed'), | |
| 'analysis_available': result.get('success', False), | |
| 'model_used': result.get('model_used', 'Unknown') | |
| } | |
| def granite_generate_questions(self, text: str, num_questions: int = 5) -> list: | |
| """Generate comprehension questions using Granite""" | |
| if not (self.granite_integration and self.granite_integration.is_available()): | |
| return [] | |
| return self.granite_integration.generate_questions(text, num_questions) | |
| # In your process_document method, update the summary generation part: | |
| # Generate summary - prioritize Granite if available for AI mode | |
| if summary_type == "ai": | |
| if self.granite_integration and self.granite_integration.is_available(): | |
| summary = self.granite_enhanced_summary(text, summary_length) | |
| elif self.summarizer: | |
| summary = self.ai_summary(text, params["max_length"], params["min_length"]) | |
| else: | |
| summary = self.advanced_extractive_summary(text, params["sentences"]) | |
| else: | |
| summary = self.advanced_extractive_summary(text, params["sentences"]) | |
| # Get Granite analysis and questions if available | |
| granite_analysis = self.granite_analyze_document(text) | |
| granite_questions = self.granite_generate_questions(text, 5) | |
| # Add to result dictionary: | |
| result = { | |
| 'original_text': text[:2000] + "..." if len(text) > 2000 else text, | |
| 'full_text_length': len(text), | |
| 'summary': summary, | |
| 'key_points': key_points, | |
| 'outline': outline, | |
| 'stats': stats, | |
| 'granite_analysis': granite_analysis, | |
| 'granite_questions': granite_questions, # Add this | |
| 'readability_score': readability_score, | |
| 'file_name': Path(file_path).name, | |
| 'file_size': os.path.getsize(file_path), | |
| 'processing_time': datetime.now().isoformat(), | |
| 'summary_type': summary_type, | |
| 'summary_length': summary_length, | |
| 'model_used': 'Granite 3.2 8B' if (summary_type == "ai" and self.granite_integration and self.granite_integration.is_available()) else ('AI (BART/T5)' if self.summarizer else 'Extractive') | |
| } | |
| # In your UI section, add the questions display: | |
| # Add Granite questions if available | |
| granite_questions_html = "" | |
| if result.get("granite_questions"): | |
| questions_list = "".join([f"<li style='margin-bottom: 10px; padding: 8px; background: rgba(255,255,255,0.1); border-radius: 6px;'>{q}</li>" | |
| for q in result["granite_questions"]]) | |
| granite_questions_html = f''' | |
| <div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%); color: white; padding: 20px; border-radius: 12px; margin: 15px 0; box-shadow: 0 6px 20px rgba(0,0,0,0.1);"> | |
| <h3>AI-Generated Questions</h3> | |
| <p style="margin-bottom: 15px; opacity: 0.9;">Test your understanding with these Granite-generated questions:</p> | |
| <ol style="padding-left: 20px; line-height: 1.6;"> | |
| {questions_list} | |
| </ol> | |
| </div> | |
| ''' | |
| # Update your system status display: | |
| **Granite 3.2 8B:** {"✅ Available" if (GRANITE_AVAILABLE and hasattr(summarizer, 'granite_integration') and summarizer.granite_integration and summarizer.granite_integration.is_available()) else "❌ Not Available"} |