Spaces:
Running
Running
| import torch | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import torchvision.transforms.functional as TF | |
| from matplotlib import colormaps | |
| from transformers import AutoModel | |
| # ---------------------------- | |
| # Configuration | |
| # ---------------------------- | |
| # The model will be downloaded from the Hugging Face Hub | |
| MODEL_ID = "facebook/dinov3-vith16plus-pretrain-lvd1689m" | |
| PATCH_SIZE = 16 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Normalization constants | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| # ---------------------------- | |
| # Model Loading (runs once at startup) | |
| # ---------------------------- | |
| def load_model_from_hub(): | |
| """Loads the DINOv3 model from the Hugging Face Hub.""" | |
| print(f"Loading model '{MODEL_ID}' from Hugging Face Hub...") | |
| try: | |
| model = AutoModel.from_pretrained(MODEL_ID) | |
| model.to(DEVICE).eval() | |
| print(f"β Model loaded successfully on device: {DEVICE}") | |
| return model | |
| except Exception as e: | |
| print(f"β Failed to load model: {e}") | |
| gr.Error(f"Could not load model from Hub: {e}") | |
| return None | |
| # Load the model globally when the app starts | |
| model = load_model_from_hub() | |
| # ---------------------------- | |
| # Helper Functions | |
| # ---------------------------- | |
| def resize_to_grid(img: Image.Image, long_side: int, patch: int) -> torch.Tensor: | |
| """Resizes an image to dimensions that are multiples of the patch size.""" | |
| w, h = img.size | |
| scale = long_side / max(h, w) | |
| new_h = max(patch, int(round(h * scale))) | |
| new_w = max(patch, int(round(w * scale))) | |
| new_h = ((new_h + patch - 1) // patch) * patch | |
| new_w = ((new_w + patch - 1) // patch) * patch | |
| return TF.to_tensor(TF.resize(img.convert("RGB"), (new_h, new_w))) | |
| def colorize(data: np.ndarray, cmap_name: str = 'viridis') -> Image.Image: | |
| """Converts a 2D numpy array to a colored PIL image.""" | |
| x = data.astype(np.float32) | |
| x = (x - x.min()) / (x.max() - x.min() + 1e-8) | |
| cmap = colormaps.get_cmap(cmap_name) | |
| rgb = (cmap(x)[..., :3] * 255).astype(np.uint8) | |
| return Image.fromarray(rgb) | |
| def blend(base: Image.Image, heat: Image.Image, alpha: float) -> Image.Image: | |
| """Blends a heatmap onto a base image.""" | |
| base = base.convert("RGBA") | |
| heat = heat.convert("RGBA") | |
| return Image.blend(base, heat, alpha=alpha) | |
| # ---------------------------- | |
| # Core Gradio Function | |
| # ---------------------------- | |
| def generate_pca_visuals( | |
| image_pil: Image.Image, | |
| resolution: int, | |
| cmap_name: str, | |
| overlay_alpha: float, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """Main function to generate PCA visuals.""" | |
| if model is None: | |
| raise gr.Error("DINOv3 model could not be loaded. Check the logs.") | |
| if image_pil is None: | |
| return None, None, "Please upload an image and click Generate.", None, None | |
| # 1. Image Preprocessing | |
| progress(0.2, desc="Resizing and preprocessing image...") | |
| image_tensor = resize_to_grid(image_pil, resolution, PATCH_SIZE) | |
| t_norm = TF.normalize(image_tensor, IMAGENET_MEAN, IMAGENET_STD).unsqueeze(0).to(DEVICE) | |
| original_processed_image = TF.to_pil_image(image_tensor) | |
| _, _, H, W = t_norm.shape | |
| Hp, Wp = H // PATCH_SIZE, W // PATCH_SIZE | |
| # 2. Feature Extraction | |
| progress(0.5, desc="π¦ Extracting features with DINOv3...") | |
| outputs = model(t_norm) | |
| # The patch embeddings are in last_hidden_state, we skip the first token (CLS) | |
| patch_embeddings = outputs.last_hidden_state.squeeze(0)[1:, :] | |
| # 3. PCA Calculation | |
| progress(0.8, desc="π¬ Performing PCA...") | |
| X_centered = patch_embeddings.float() - patch_embeddings.float().mean(0, keepdim=True) | |
| U, S, V = torch.pca_lowrank(X_centered, q=3, center=False) | |
| # Stabilize the signs of the eigenvectors for deterministic output | |
| for i in range(V.shape[1]): | |
| max_abs_idx = torch.argmax(torch.abs(V[:, i])) | |
| if V[max_abs_idx, i] < 0: | |
| V[:, i] *= -1 | |
| scores = X_centered @ V[:, :3] | |
| # 4. Explained Variance | |
| total_variance = (X_centered ** 2).sum() | |
| explained_variance = [float((s**2) / total_variance) for s in S] | |
| variance_text = ( | |
| f"**π Explained Variance Ratios:**\n\n" | |
| f"- **PC1:** {explained_variance[0]:.2%}\n" | |
| f"- **PC2:** {explained_variance[1]:.2%}\n" | |
| f"- **PC3:** {explained_variance[2]:.2%}" | |
| ) | |
| # 5. Create Visualizations | |
| pc1_map = scores[:, 0].reshape(Hp, Wp).cpu().numpy() | |
| pc1_image_raw = colorize(pc1_map, cmap_name) | |
| pc_rgb_map = scores.reshape(Hp, Wp, 3).cpu().numpy() | |
| min_vals = pc_rgb_map.reshape(-1, 3).min(axis=0) | |
| max_vals = pc_rgb_map.reshape(-1, 3).max(axis=0) | |
| pc_rgb_map = (pc_rgb_map - min_vals) / (max_vals - min_vals + 1e-8) | |
| pc_rgb_image_raw = Image.fromarray((pc_rgb_map * 255).astype(np.uint8)) | |
| target_size = original_processed_image.size | |
| pc1_image_smooth = pc1_image_raw.resize(target_size, Image.Resampling.BICUBIC) | |
| pc_rgb_image_smooth = pc_rgb_image_raw.resize(target_size, Image.Resampling.BICUBIC) | |
| blended_image = blend(original_processed_image, pc1_image_smooth, overlay_alpha) | |
| progress(1.0, desc="β Done!") | |
| return pc1_image_smooth, pc_rgb_image_smooth, variance_text, blended_image, original_processed_image | |
| # ---------------------------- | |
| # Gradio Interface | |
| # ---------------------------- | |
| with gr.Blocks(theme=gr.themes.Soft(), title="DINOv3 PCA Explorer") as demo: | |
| gr.Markdown( | |
| """ | |
| # π¦ DINOv3 PCA Explorer | |
| Upload an image to visualize the principal components of its patch features. | |
| This reveals the main axes of semantic variation within the image as understood by the model. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| input_image = gr.Image(type="pil", label="Upload Image", value="https://picsum.photos/id/1011/800/600") | |
| with gr.Accordion("βοΈ Visualization Controls", open=True): | |
| resolution_slider = gr.Slider( | |
| minimum=224, maximum=1024, value=512, step=16, | |
| label="Processing Resolution", | |
| info="Higher values capture more detail but are slower." | |
| ) | |
| cmap_dropdown = gr.Dropdown( | |
| ['viridis', 'magma', 'inferno', 'plasma', 'cividis', 'jet'], | |
| value='viridis', | |
| label="Heatmap Colormap" | |
| ) | |
| alpha_slider = gr.Slider( | |
| minimum=0, maximum=1, value=0.5, | |
| label="Overlay Opacity" | |
| ) | |
| run_button = gr.Button("π Generate PCA Visuals", variant="primary") | |
| with gr.Column(scale=3): | |
| with gr.Tabs(): | |
| with gr.TabItem("πΌοΈ Overlay"): | |
| gr.Markdown("Visualize the main heatmap blended with the original image.") | |
| output_blended = gr.Image(label="PC1 Heatmap Overlay") | |
| output_processed = gr.Image(label="Original Processed Image (at selected resolution)") | |
| with gr.TabItem("π PCA Outputs"): | |
| gr.Markdown("View the raw outputs of the Principal Component Analysis.") | |
| output_pc1 = gr.Image(label="PC1 Heatmap (Smoothed)") | |
| output_rgb = gr.Image(label="Top 3 PCs as RGB (Smoothed)") | |
| output_variance = gr.Markdown(label="Explained Variance") | |
| run_button.click( | |
| fn=generate_pca_visuals, | |
| inputs=[input_image, resolution_slider, cmap_dropdown, alpha_slider], | |
| outputs=[output_pc1, output_rgb, output_variance, output_blended, output_processed] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |