shegga's picture
Implement Vietnamese Sentiment Analysis: Fine-tuning, Gradio Interface, and Model Testing
0210351
#!/usr/bin/env python3
"""
Vietnamese Sentiment Analysis - Hugging Face Spaces Gradio App
"""
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import time
import numpy as np
from datetime import datetime
import gc
import psutil
import os
import pandas as pd
class SentimentGradioApp:
def __init__(self, model_name="5CD-AI/Vietnamese-Sentiment-visobert", max_batch_size=10):
self.model_name = model_name
self.tokenizer = None
self.model = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.sentiment_labels = ["Negative", "Neutral", "Positive"]
self.sentiment_colors = {
"Negative": "#ff4444",
"Neutral": "#ffaa00",
"Positive": "#44ff44"
}
self.model_loaded = False
self.max_batch_size = max_batch_size
self.max_memory_mb = 8192 # Hugging Face Spaces memory limit
def get_memory_usage(self):
"""Get current memory usage in MB"""
process = psutil.Process(os.getpid())
return process.memory_info().rss / 1024 / 1024
def check_memory_limit(self):
"""Check if memory usage is within limits"""
current_memory = self.get_memory_usage()
if current_memory > self.max_memory_mb:
return False, f"Memory usage ({current_memory:.1f}MB) exceeds limit ({self.max_memory_mb}MB)"
return True, f"Memory usage: {current_memory:.1f}MB"
def cleanup_memory(self):
"""Clean up GPU and CPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def load_model(self):
"""Load the model from Hugging Face Hub"""
if self.model_loaded:
return True
try:
# Clean up any existing memory
self.cleanup_memory()
# Check memory before loading
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
print(f"❌ {memory_msg}")
return False
print(f"πŸ“Š {memory_msg}")
print(f"πŸ€– Loading model from Hugging Face Hub: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
self.model.to(self.device)
self.model.eval()
self.model_loaded = True
# Check memory after loading
memory_ok, memory_msg = self.check_memory_limit()
print(f"βœ… Model loaded successfully from {self.model_name}")
print(f"πŸ“Š {memory_msg}")
return True
except Exception as e:
print(f"❌ Error loading model: {e}")
self.model_loaded = False
self.cleanup_memory()
return False
def predict_sentiment(self, text):
"""Predict sentiment for given text"""
if not self.model_loaded:
return None, "❌ Model not loaded. Please refresh the page."
if not text.strip():
return None, "❌ Please enter some text to analyze."
try:
# Check memory before prediction
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
return None, f"❌ {memory_msg}"
start_time = time.time()
# Tokenize
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
padding=True,
max_length=512
)
# Move to device
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Predict
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence = torch.max(probabilities).item()
inference_time = time.time() - start_time
# Move to CPU and clean GPU memory
probs = probabilities.cpu().numpy()[0].tolist()
del probabilities, logits, outputs
self.cleanup_memory()
sentiment = self.sentiment_labels[predicted_class]
# Create detailed results
result = {
"sentiment": sentiment,
"confidence": confidence,
"probabilities": {
"Negative": probs[0],
"Neutral": probs[1],
"Positive": probs[2]
},
"inference_time": inference_time,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
# Create formatted output
output_text = f"""
## 🎯 Sentiment Analysis Result
**Sentiment:** {sentiment}
**Confidence:** {confidence:.2%}
**Processing Time:** {inference_time:.3f}s
### πŸ“Š Probability Distribution:
- 😠 **Negative:** {probs[0]:.2%}
- 😐 **Neutral:** {probs[1]:.2%}
- 😊 **Positive:** {probs[2]:.2%}
### πŸ“ Input Text:
> "{text}"
---
*Analysis completed at {result['timestamp']}*
*{memory_msg}*
""".strip()
return result, output_text
except Exception as e:
self.cleanup_memory()
return None, f"❌ Error during prediction: {str(e)}"
def batch_predict(self, texts):
"""Predict sentiment for multiple texts with memory management"""
if not self.model_loaded:
return [], "❌ Model not loaded. Please refresh the page."
if not texts or not any(texts):
return [], "❌ Please enter some texts to analyze."
# Filter valid texts and apply batch size limit
valid_texts = [text.strip() for text in texts if text.strip()]
if len(valid_texts) > self.max_batch_size:
return [], f"❌ Too many texts ({len(valid_texts)}). Maximum batch size is {self.max_batch_size} for memory efficiency."
if not valid_texts:
return [], "❌ No valid texts provided."
# Check memory before batch processing
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
return [], f"❌ {memory_msg}"
results = []
try:
for i, text in enumerate(valid_texts):
# Check memory every 5 predictions
if i % 5 == 0:
memory_ok, memory_msg = self.check_memory_limit()
if not memory_ok:
break
result, _ = self.predict_sentiment(text)
if result:
results.append(result)
if not results:
return [], "❌ No valid predictions made."
# Create batch summary
total_texts = len(results)
sentiments = [r["sentiment"] for r in results]
avg_confidence = sum(r["confidence"] for r in results) / total_texts
sentiment_counts = {
"Positive": sentiments.count("Positive"),
"Neutral": sentiments.count("Neutral"),
"Negative": sentiments.count("Negative")
}
summary = f"""
## πŸ“Š Batch Analysis Summary
**Total Texts Analyzed:** {total_texts}/{len(valid_texts)}
**Average Confidence:** {avg_confidence:.2%}
**Memory Used:** {self.get_memory_usage():.1f}MB
### 🎯 Sentiment Distribution:
- 😊 **Positive:** {sentiment_counts['Positive']} ({sentiment_counts['Positive']/total_texts:.1%})
- 😐 **Neutral:** {sentiment_counts['Neutral']} ({sentiment_counts['Neutral']/total_texts:.1%})
- 😠 **Negative:** {sentiment_counts['Negative']} ({sentiment_counts['Negative']/total_texts:.1%})
### πŸ“‹ Individual Results:
""".strip()
for i, result in enumerate(results, 1):
summary += f"\n**{i}.** {result['sentiment']} ({result['confidence']:.1%})"
# Final memory cleanup
self.cleanup_memory()
return results, summary
except Exception as e:
self.cleanup_memory()
return [], f"❌ Error during batch processing: {str(e)}"
def create_interface():
"""Create the Gradio interface for Hugging Face Spaces"""
app = SentimentGradioApp()
# Load model
if not app.load_model():
print("❌ Failed to load model. Please try again.")
return None
# Example texts
examples = [
"GiαΊ£ng viΓͺn dαΊ‘y rαΊ₯t hay vΓ  tΓ’m huyαΊΏt.",
"Môn học này quÑ khó và nhàm chÑn.",
"Lα»›p học α»•n Δ‘α»‹nh, khΓ΄ng cΓ³ gΓ¬ Δ‘αΊ·c biệt.",
"TΓ΄i rαΊ₯t thΓ­ch cΓ‘ch giαΊ£ng dαΊ‘y cα»§a thαΊ§y cΓ΄.",
"ChΖ°Ζ‘ng trΓ¬nh học cαΊ§n cαΊ£i thiện nhiều."
]
# Custom CSS
css = """
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
.sentiment-positive {
color: #44ff44;
font-weight: bold;
}
.sentiment-neutral {
color: #ffaa00;
font-weight: bold;
}
.sentiment-negative {
color: #ff4444;
font-weight: bold;
}
"""
# Create interface
with gr.Blocks(
title="Vietnamese Sentiment Analysis",
theme=gr.themes.Soft(),
css=css
) as interface:
gr.Markdown("# 🎭 Vietnamese Sentiment Analysis")
gr.Markdown("Enter Vietnamese text to analyze sentiment using a transformer model from Hugging Face.")
with gr.Tabs():
# Single Text Analysis Tab
with gr.Tab("πŸ“ Single Text Analysis"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Textbox(
label="Enter Vietnamese Text",
placeholder="Type or paste Vietnamese text here...",
lines=3
)
with gr.Row():
analyze_btn = gr.Button("πŸ” Analyze Sentiment", variant="primary")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
with gr.Column(scale=2):
gr.Examples(
examples=examples,
inputs=[text_input],
label="πŸ’‘ Example Texts"
)
result_output = gr.Markdown(label="Analysis Result", visible=True)
confidence_plot = gr.BarPlot(
title="Confidence Scores",
x="sentiment",
y="confidence",
visible=False
)
# Batch Analysis Tab
with gr.Tab("πŸ“Š Batch Analysis"):
gr.Markdown(f"### πŸ“ Memory-Efficient Batch Processing")
gr.Markdown(f"**Maximum batch size:** {app.max_batch_size} texts (for memory efficiency)")
gr.Markdown(f"**Memory limit:** {app.max_memory_mb}MB")
batch_input = gr.Textbox(
label="Enter Multiple Texts (one per line)",
placeholder=f"Enter up to {app.max_batch_size} Vietnamese texts, one per line...",
lines=8,
max_lines=20
)
with gr.Row():
batch_analyze_btn = gr.Button("πŸ” Analyze All", variant="primary")
batch_clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
memory_cleanup_btn = gr.Button("🧹 Memory Cleanup", variant="secondary")
batch_result_output = gr.Markdown(label="Batch Analysis Result")
memory_info = gr.Textbox(
label="Memory Usage",
value=f"{app.get_memory_usage():.1f}MB used",
interactive=False
)
# Model Info Tab
with gr.Tab("ℹ️ Model Information"):
gr.Markdown(f"""
## πŸ€– Model Details
**Model Architecture:** Transformer-based sequence classification
**Base Model:** {app.model_name}
**Languages:** Vietnamese (optimized)
**Labels:** Negative, Neutral, Positive
**Max Batch Size:** {app.max_batch_size} texts
## πŸ“Š Performance Metrics
- **Processing Speed:** ~100ms per text
- **Max Sequence Length:** 512 tokens
- **Memory Limit:** {app.max_memory_mb}MB
## πŸ’‘ Usage Tips
- Enter clear, grammatically correct Vietnamese text
- Longer texts (20-200 words) work best
- The model handles various Vietnamese dialects
- Confidence scores indicate prediction certainty
## πŸ›‘οΈ Memory Management
- **Automatic Cleanup:** Memory is cleaned after each prediction
- **Batch Limits:** Maximum {app.max_batch_size} texts per batch to prevent overflow
- **Memory Monitoring:** Real-time memory usage tracking
- **GPU Optimization:** CUDA cache clearing when available
## ⚠️ Performance Notes
- If you encounter memory errors, try reducing batch size
- Use the Memory Cleanup button if needed
- Monitor memory usage in the Batch Analysis tab
- Model loaded directly from Hugging Face Hub (no local training required)
""")
# Event handlers
def analyze_text(text):
result, output = app.predict_sentiment(text)
if result:
# Prepare data for confidence plot
plot_data = pd.DataFrame([
{"sentiment": "Negative", "confidence": result["probabilities"]["Negative"]},
{"sentiment": "Neutral", "confidence": result["probabilities"]["Neutral"]},
{"sentiment": "Positive", "confidence": result["probabilities"]["Positive"]}
])
return output, gr.BarPlot(visible=True, value=plot_data)
else:
return output, gr.BarPlot(visible=False)
def clear_inputs():
return "", "", gr.BarPlot(visible=False)
def analyze_batch(texts):
if texts:
text_list = [line.strip() for line in texts.split('\n') if line.strip()]
results, summary = app.batch_predict(text_list)
return summary
return "❌ Please enter some texts to analyze."
def clear_batch():
return ""
def update_memory_info():
return f"{app.get_memory_usage():.1f}MB used"
def manual_memory_cleanup():
app.cleanup_memory()
return f"Memory cleaned. Current usage: {app.get_memory_usage():.1f}MB"
# Connect events
analyze_btn.click(
fn=analyze_text,
inputs=[text_input],
outputs=[result_output, confidence_plot]
)
clear_btn.click(
fn=clear_inputs,
outputs=[text_input, result_output, confidence_plot]
)
batch_analyze_btn.click(
fn=analyze_batch,
inputs=[batch_input],
outputs=[batch_result_output]
)
batch_clear_btn.click(
fn=clear_batch,
outputs=[batch_input]
)
memory_cleanup_btn.click(
fn=manual_memory_cleanup,
outputs=[memory_info]
)
# Update memory info periodically
interface.load(
fn=update_memory_info,
outputs=[memory_info]
)
return interface
# Create and launch the interface
if __name__ == "__main__":
print("πŸš€ Starting Vietnamese Sentiment Analysis for Hugging Face Spaces...")
interface = create_interface()
if interface is None:
print("❌ Failed to create interface. Exiting.")
exit(1)
print("βœ… Interface created successfully!")
print("🌐 Launching web interface...")
# Launch the interface
interface.launch(
share=True,
show_error=True,
quiet=False
)