Upload app.py
#1
by
KK00001
- opened
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import joblib
|
| 4 |
+
|
| 5 |
+
# ✅ Load Model & Scaler from Specific Path
|
| 6 |
+
model_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\lr.pkl")
|
| 7 |
+
scaler_path = ("C:\\Users\\KAUSHIK\\OneDrive\\Documents\\scaler.pkl")
|
| 8 |
+
|
| 9 |
+
lr = joblib.load(model_path)
|
| 10 |
+
scaler = joblib.load(scaler_path)
|
| 11 |
+
|
| 12 |
+
st.title("Diabetes Disease Progression Predictor")
|
| 13 |
+
st.write("Enter the following patient details:")
|
| 14 |
+
|
| 15 |
+
# Input Features
|
| 16 |
+
features = ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']
|
| 17 |
+
inputs = []
|
| 18 |
+
|
| 19 |
+
for feature in features:
|
| 20 |
+
val = st.number_input(f"{feature}", value=0.0, step=0.01, format="%.2f")
|
| 21 |
+
inputs.append(val)
|
| 22 |
+
|
| 23 |
+
# Predict Button
|
| 24 |
+
if st.button("Predict Disease Progression"):
|
| 25 |
+
data = np.array([inputs])
|
| 26 |
+
scaled_data = scaler.transform(data)
|
| 27 |
+
prediction = lr.predict(scaled_data)
|
| 28 |
+
st.success(f"Predicted Disease Progression Score: {prediction[0]:.2f}")
|