File size: 29,309 Bytes
babafa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
try:
import spaces
GPU = spaces.GPU
print("spaces GPU is available")
except ImportError:
def GPU(func):
return func
import os
import subprocess
# def install_cuda_toolkit():
# # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
# os.environ["CUDA_HOME"] = "/usr/local/cuda"
# os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
# os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
# os.environ["CUDA_HOME"],
# "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
# )
# # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
# os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
# print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
# subprocess.call('rm /usr/bin/gcc', shell=True)
# subprocess.call('rm /usr/bin/g++', shell=True)
# subprocess.call('rm /usr/local/cuda/bin/gcc', shell=True)
# subprocess.call('rm /usr/local/cuda/bin/g++', shell=True)
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
# subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/local/cuda/bin/gcc', shell=True)
# subprocess.call('ln -s /usr/bin/g++-11 /usr/local/cuda/bin/g++', shell=True)
# subprocess.call('gcc --version', shell=True)
# subprocess.call('g++ --version', shell=True)
# install_cuda_toolkit()
# subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712 --no-build-isolation --use-pep517', env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "8.0;8.6"}, shell=True)
from flask import Flask, jsonify, request, send_file, render_template
import base64
import io
from PIL import Image
import torch
import numpy as np
import os
import argparse
import imageio
import json
import time
import threading
from concurrency_manager import ConcurrencyManager
from huggingface_hub import hf_hub_download
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import imageio
from models import *
from utils import *
from transformers import T5TokenizerFast, UMT5EncoderModel
from diffusers import FlowMatchEulerDiscreteScheduler
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
return torch.argmin(
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
class GenerationSystem(nn.Module):
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
super().__init__()
self.device = device
self.offload_t5 = offload_t5
self.offload_vae = offload_vae
self.latent_dim = 48
self.temporal_downsample_factor = 4
self.spatial_downsample_factor = 16
self.feat_dim = 1024
self.latent_patch_size = 2
self.denoising_steps = [0, 250, 500, 750]
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
from models.autoencoder_kl_wan import WanCausalConv3d
with torch.no_grad():
for name, module in self.vae.named_modules():
if isinstance(module, WanCausalConv3d):
time_pad = module._padding[4]
module.padding = (0, module._padding[2], module._padding[0])
module._padding = (0, 0, 0, 0, 0, 0)
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
self.vae.requires_grad_(False)
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
self.latent_scale_fn = lambda x: (x - self.latents_mean) / self.latents_std
self.latent_unscale_fn = lambda x: x * self.latents_std + self.latents_mean
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
self.transformer.disable_gradient_checkpointing()
self.transformer.gradient_checkpointing = False
self.add_feedback_for_transformer()
if ckpt_path is not None:
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
self.transformer.load_state_dict(state_dict["transformer"])
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
print(f"Loaded {ckpt_path}.")
from quant import FluxFp8GeMMProcessor
FluxFp8GeMMProcessor(self.transformer)
del self.vae.post_quant_conv, self.vae.decoder
self.vae.to(self.device if not self.offload_vae else "cpu")
self.transformer.to(self.device)
def add_feedback_for_transformer(self):
self.use_feedback = True
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
def encode_text(self, texts):
max_sequence_length = 512
text_inputs = self.tokenizer(
texts,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
if getattr(self, "offload_t5", False):
text_input_ids = text_inputs.input_ids.to("cpu")
mask = text_inputs.attention_mask.to("cpu")
else:
text_input_ids = text_inputs.input_ids.to(self.device)
mask = text_inputs.attention_mask.to(self.device)
seq_lens = mask.gt(0).sum(dim=1).long()
if getattr(self, "offload_t5", False):
with torch.no_grad():
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
else:
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
text_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
)
return text_embeds.float()
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred_2d = noisy_latents - sigma * v_pred
if need_3d_mode:
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
return {
'2d': latents_pred_2d,
'3d': latents_pred_3d if need_3d_mode else None,
'rgb_3d': images_pred if need_3d_mode else None,
'scene': scene_params if need_3d_mode else None,
'feat': feats
}
@torch.no_grad()
@torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda")
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
with torch.no_grad():
batch_size = 1
cameras = cameras.to(self.device).unsqueeze(0)
if cameras.shape[1] != n_frame:
render_cameras = cameras.clone()
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
else:
render_cameras = cameras
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
text = "[Static] " + text
text_embeds = self.encode_text([text])
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
masks = torch.zeros(batch_size, n_frame, device=self.device)
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
if image is not None:
image = image.to(self.device)
latent = self.latent_scale_fn(self.vae.encode(
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
).latent_dist.sample().to(self.device)).squeeze(2)
masks[:, image_index] = 1
condition_latents[:, :, image_index] = latent
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
noisy_latents = noise
torch.cuda.empty_cache()
if self.use_feedback:
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
for i in range(len(self.denoising_steps)):
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
t = self.timesteps[t_ids]
if self.use_feedback:
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
else:
_condition_latents = condition_latents
if i < len(self.denoising_steps) - 1:
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
latents_pred = out["3d"]
if self.use_feedback:
prev_latents_pred = latents_pred
prev_feats = out['feat']
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
else:
out = self.transformer(
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
timestep=t,
encoder_hidden_states=text_embeds,
return_dict=False,
)[0]
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
latents_pred = noisy_latents - sigma * v_pred
scene_params = self.recon_decoder(
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
cameras
).flatten(1, -2)
if video_output_path is not None:
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
scene_params = scene_params[0]
scene_params = scene_params.detach().cpu()
return scene_params, ref_w2c, T_norm
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=7860)
parser.add_argument("--ckpt", default=None)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--cache_dir", type=str, default="./tmpfiles")
parser.add_argument("--offload_t5", type=bool, default=False)
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
args, _ = parser.parse_known_args()
# Ensure model.ckpt exists, download if not present
if args.ckpt is None:
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
if not os.path.exists(ckpt_path):
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
else:
ckpt_path = args.ckpt
app = Flask(__name__)
# 初始化GenerationSystem
device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu"
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
# 初始化并发管理器
concurrency_manager = ConcurrencyManager(max_concurrent=args.max_concurrent)
@app.after_request
def after_request(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
@GPU
def generate_wrapper(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None):
"""生成函数的包装器,用于并发控制"""
return generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path)
def job_generate(file_id, cache_dir, payload):
"""工作线程执行的生成任务:负责生成并落盘,返回可下载信息"""
# 解包参数
cameras = payload["cameras"]
n_frame = payload["n_frame"]
image = payload["image"]
text_prompt = payload["text_prompt"]
image_index = payload["image_index"]
image_height = payload["image_height"]
image_width = payload["image_width"]
data = payload["raw_request"]
# 执行生成
scene_params, ref_w2c, T_norm = generation_system.generate(
cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=None
)
# 保存请求元数据
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
json.dump(data, f)
# 导出PLY文件
splat_path = os.path.join(cache_dir, f'{file_id}.ply')
export_ply_for_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
file_size = os.path.getsize(splat_path) if os.path.exists(splat_path) else 0
return {
'file_id': file_id,
'file_path': splat_path,
'file_size': file_size,
'download_url': f'/download/{file_id}'
}
@app.route('/generate', methods=['POST', 'OPTIONS'])
def generate():
# Handle preflight request
if request.method == 'OPTIONS':
return jsonify({'status': 'ok'})
try:
data = request.get_json(force=True)
image_prompt = data.get('image_prompt', None)
text_prompt = data.get('text_prompt', "")
cameras = data.get('cameras')
resolution = data.get('resolution')
image_index = data.get('image_index', 0)
n_frame, image_height, image_width = resolution
if not image_prompt and text_prompt == "":
return jsonify({'error': 'No Prompts provided'}), 400
# 处理图像
if image_prompt:
# image_prompt可以是路径和base64
if os.path.exists(image_prompt):
image_prompt = Image.open(image_prompt)
else:
# image_prompt 可能是 "data:image/png;base64,...."
if ',' in image_prompt:
image_prompt = image_prompt.split(',', 1)[1]
try:
image_bytes = base64.b64decode(image_prompt)
image_prompt = Image.open(io.BytesIO(image_bytes))
except Exception as img_e:
return jsonify({'error': f'Image decode error: {str(img_e)}'}), 400
image = image_prompt.convert('RGB')
w, h = image.size
# center crop
if image_height / h > image_width / w:
scale = image_height / h
else:
scale = image_width / w
new_h = int(image_height / scale)
new_w = int(image_width / scale)
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
for camera in cameras:
camera['fx'] = camera['fx'] * scale
camera['fy'] = camera['fy'] * scale
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
else:
image = None
cameras = torch.stack([
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
for camera in cameras
], dim=0)
file_id = str(int(time.time() * 1000))
# 组装任务参数,推迟执行与落盘到工作线程中
payload = {
'cameras': cameras,
'n_frame': n_frame,
'image': image,
'text_prompt': text_prompt,
'image_index': image_index,
'image_height': image_height,
'image_width': image_width,
'raw_request': data,
}
# 提交任务到并发管理器(异步)
task_id = concurrency_manager.submit_task(
job_generate, file_id, args.cache_dir, payload
)
# 提交后立即返回队列信息
queue_status = concurrency_manager.get_queue_status()
queued_tasks = queue_status.get('queued_tasks', [])
try:
queue_position = queued_tasks.index(task_id) + 1
except ValueError:
# 如果任务已被工作线程立即领取,则认为已开始执行,位置为 0
queue_position = 0
return jsonify({
'success': True,
'task_id': task_id,
'file_id': file_id,
'queue': {
'queued_count': queue_status.get('queued_count', 0),
'running_count': queue_status.get('running_count', 0),
'position': queue_position
}
}), 202
except Exception as e:
return jsonify({'error': f'Server error: {str(e)}'}), 500
@app.route('/download/<file_id>', methods=['GET'])
def download_file(file_id):
"""下载生成的PLY文件"""
file_path = os.path.join(args.cache_dir, f'{file_id}.ply')
if not os.path.exists(file_path):
return jsonify({'error': 'File not found'}), 404
return send_file(file_path, as_attachment=True, download_name=f'{file_id}.ply')
@app.route('/delete/<file_id>', methods=['DELETE', 'POST', 'OPTIONS'])
def delete_file_endpoint(file_id):
"""删除生成的文件及其元数据(由前端在下载完成后调用)"""
# CORS preflight
if request.method == 'OPTIONS':
return jsonify({'status': 'ok'})
try:
ply_path = os.path.join(args.cache_dir, f'{file_id}.ply')
json_path = os.path.join(args.cache_dir, f'{file_id}.json')
deleted = []
for path in [ply_path, json_path]:
if os.path.exists(path):
os.remove(path)
deleted.append(os.path.basename(path))
return jsonify({'success': True, 'deleted': deleted})
except Exception as e:
return jsonify({'success': False, 'error': str(e)}), 500
@app.route('/status', methods=['GET'])
def get_status():
"""获取系统状态和队列信息"""
try:
queue_status = concurrency_manager.get_queue_status()
return jsonify({
'success': True,
'status': queue_status,
'timestamp': time.time()
})
except Exception as e:
return jsonify({'error': f'Failed to get status: {str(e)}'}), 500
@app.route('/task/<task_id>', methods=['GET'])
def get_task_status(task_id):
"""获取特定任务的状态(包含排队位置和完成后的文件信息)"""
try:
task = concurrency_manager.get_task_status(task_id)
if not task:
return jsonify({'error': 'Task not found'}), 404
queue_status = concurrency_manager.get_queue_status()
queued_tasks = queue_status.get('queued_tasks', [])
try:
queue_position = queued_tasks.index(task_id) + 1
except ValueError:
queue_position = 0
resp = {
'success': True,
'task_id': task_id,
'status': task.status.value,
'created_at': task.created_at,
'started_at': task.started_at,
'completed_at': task.completed_at,
'error': task.error,
'queue': {
'queued_count': queue_status.get('queued_count', 0),
'running_count': queue_status.get('running_count', 0),
'position': queue_position
}
}
if task.status.value == 'completed' and isinstance(task.result, dict):
resp.update({
'file_id': task.result.get('file_id'),
'file_path': task.result.get('file_path'),
'file_size': task.result.get('file_size'),
'download_url': task.result.get('download_url'),
'generation_time': (task.completed_at - task.started_at)
})
# 更新task状态
return jsonify(resp)
except Exception as e:
return jsonify({'error': f'Failed to get task status: {str(e)}'}), 500
@app.route("/")
def index():
return send_file("index.html")
os.makedirs(args.cache_dir, exist_ok=True)
# 后台定时清理:删除超过30分钟未访问/修改的缓存文件
def cleanup_worker(cache_dir: str, max_age_seconds: int = 1800, interval_seconds: int = 300):
while True:
try:
now = time.time()
for name in os.listdir(cache_dir):
# 只清理与任务相关的 .ply/.json 文件
if not (name.endswith('.ply') or name.endswith('.json')):
continue
path = os.path.join(cache_dir, name)
try:
mtime = os.path.getmtime(path)
if now - mtime > max_age_seconds:
os.remove(path)
except FileNotFoundError:
pass
except Exception:
# 忽略单个文件的异常,继续清理
pass
except Exception:
# 防止线程因异常退出
pass
time.sleep(interval_seconds)
cleaner_thread = threading.Thread(target=cleanup_worker, args=(args.cache_dir,), daemon=True)
cleaner_thread.start()
app.run(host='0.0.0.0', port=args.port) |