File size: 19,170 Bytes
babafa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
from io import BytesIO
import math
import numpy as np
import torch 
import torch.nn as nn
import torch.nn.functional as F
import importlib
from plyfile import PlyData, PlyElement

import copy

class EmbedContainer(nn.Module):
    def __init__(self, tensor):
        super().__init__()
        self.tensor = nn.Parameter(tensor)
    
    def forward(self):
        return self.tensor

@torch.no_grad
def zero_init(module):
    if type(module) is torch.nn.Conv2d or type(module) is torch.nn.Linear:
        module.weight.zero_()
        module.bias.zero_()
    return module

def import_str(string):
    # From https://github.com/CompVis/taming-transformers
    module, cls = string.rsplit(".", 1)
    return getattr(importlib.import_module(module, package=None), cls)

"""
from https://github.com/Kai-46/minFM/blob/main/utils/ema.py
Exponential Moving Average (EMA) utilities for PyTorch models.

This module provides utilities for maintaining and updating EMA models,
which are commonly used to improve model stability and generalization
in training deep neural networks. It supports both regular tensors and
DTensors (from FSDP-wrapped models).
"""
class EMA_FSDP:
    def __init__(self, fsdp_module: torch.nn.Module, decay: float = 0.999):
        self.decay = decay
        self.shadow = {}
        self._init_shadow(fsdp_module)

    @torch.no_grad()
    def _init_shadow(self, fsdp_module):
        # 判断是否是FSDP模型
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        if isinstance(fsdp_module, FSDP):
            with FSDP.summon_full_params(fsdp_module, writeback=False):
                for n, p in fsdp_module.module.named_parameters():
                    self.shadow[n] = p.detach().clone().float().cpu()
        else:
            for n, p in fsdp_module.named_parameters():
                self.shadow[n] = p.detach().clone().float().cpu()

    @torch.no_grad()
    def update(self, fsdp_module):
        d = self.decay
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        if isinstance(fsdp_module, FSDP):
            with FSDP.summon_full_params(fsdp_module, writeback=False):
                for n, p in fsdp_module.module.named_parameters():
                    self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)
        else:
            for n, p in fsdp_module.named_parameters():
                print(n, self.shadow[n])
                self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)

    # Optional helpers ---------------------------------------------------
    def state_dict(self):
        return self.shadow            # picklable

    def load_state_dict(self, sd):
        self.shadow = {k: v.clone() for k, v in sd.items()}

    def copy_to(self, fsdp_module):
        # load EMA weights into an (unwrapped) copy of the generator
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        with FSDP.summon_full_params(fsdp_module, writeback=True):
            for n, p in fsdp_module.module.named_parameters():
                if n in self.shadow:
                    p.data.copy_(self.shadow[n].to(p.dtype, device=p.device))

def create_raymaps(cameras, h, w):
    rays_o, rays_d = create_rays(cameras, h, w)
    raymaps = torch.cat([rays_d, rays_o - (rays_o * rays_d).sum(dim=-1, keepdim=True) * rays_d], dim=-1)
    return raymaps

# def create_raymaps(cameras, h, w):
#     rays_o, rays_d = create_rays(cameras, h, w)
#     raymaps = torch.cat([rays_d, torch.cross(rays_d, rays_o, dim=-1)], dim=-1)
#     return raymaps

class EMANorm(nn.Module):
    def __init__(self, beta):
        super().__init__()
        self.register_buffer('magnitude_ema', torch.ones([]))
        self.beta = beta

    def forward(self, x):
        if self.training:
            magnitude_cur = x.detach().to(torch.float32).square().mean()
            self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema.to(torch.float32), self.beta))
        input_gain = self.magnitude_ema.rsqrt()
        x = x.mul(input_gain)
        return x
    
class TimestepEmbedding(nn.Module):
    def __init__(self, dim, max_period=10000, time_factor: float = 1000.0, zero_weight: bool = True):
        super().__init__()
        self.max_period = max_period
        self.time_factor = time_factor
        self.dim = dim
        if zero_weight:
            self.weight = nn.Parameter(torch.zeros(dim))
        else:
            self.weight = None

    def forward(self, t):
        if self.weight is None:
            return timestep_embedding(t, self.dim, self.max_period, self.time_factor)
        else:
            return timestep_embedding(t, self.dim, self.max_period, self.time_factor) * self.weight.unsqueeze(0)

@torch.compile(mode="max-autotune-no-cudagraphs", dynamic=True)
def timestep_embedding(t, dim, max_period=10000, time_factor: float = 1000.0):
    """
    Create sinusoidal timestep embeddings.
    :param t: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an (N, D) Tensor of positional embeddings.
    """
    t = time_factor * t
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)

    args = t[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    if torch.is_floating_point(t):
        embedding = embedding.to(t)
    return embedding

def quaternion_to_matrix(quaternions):
    """
    Convert rotations given as quaternions to rotation matrices.
    Args:
        quaternions: quaternions with real part first,
            as tensor of shape (..., 4).
    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))

# from https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor:
    """
    Convert a unit quaternion to a standard form: one in which the real
    part is non negative.

    Args:
        quaternions: Quaternions with real part first,
            as tensor of shape (..., 4).

    Returns:
        Standardized quaternions as tensor of shape (..., 4).
    """
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)

def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    """
    Returns torch.sqrt(torch.max(0, x))
    but with a zero subgradient where x is 0.
    """
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    if torch.is_grad_enabled():
        ret[positive_mask] = torch.sqrt(x[positive_mask])
    else:
        ret = torch.where(positive_mask, torch.sqrt(x), ret)
    return ret

def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    """
    Convert rotations given as rotation matrices to quaternions.

    Args:
        matrix: Rotation matrices as tensor of shape (..., 3, 3).

    Returns:
        quaternions with real part first, as tensor of shape (..., 4).
    """
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(batch_dim + (9,)), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    # we produce the desired quaternion multiplied by each of r, i, j, k
    quat_by_rijk = torch.stack(
        [
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
            #  `int`.
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    # We floor here at 0.1 but the exact level is not important; if q_abs is small,
    # the candidate won't be picked.
    flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))

    # if not for numerical problems, quat_candidates[i] should be same (up to a sign),
    # forall i; we pick the best-conditioned one (with the largest denominator)
    indices = q_abs.argmax(dim=-1, keepdim=True)
    expand_dims = list(batch_dim) + [1, 4]
    gather_indices = indices.unsqueeze(-1).expand(expand_dims)
    out = torch.gather(quat_candidates, -2, gather_indices).squeeze(-2)
    return standardize_quaternion(out)

@torch.amp.autocast(device_type="cuda", enabled=False)
def normalize_cameras(cameras, return_meta=False, ref_w2c=None, T_norm=None, n_frame=None):
    B, N = cameras.shape[:2]
     
    c2ws = torch.zeros(B, N, 3, 4, device=cameras.device)

    c2ws[..., :3, :3] = quaternion_to_matrix(cameras[..., 0:4])
    c2ws[..., :, 3] = cameras[..., 4:7]

    _c2ws = c2ws

    ref_w2c = torch.inverse(matrix_to_square(_c2ws[:, :1])) if ref_w2c is None else ref_w2c
    _c2ws = (ref_w2c.repeat(1, N, 1, 1) @ matrix_to_square(_c2ws))[..., :3, :]

    if n_frame is not None:
        T_norm = _c2ws[..., :n_frame, :3, 3].norm(dim=-1).max(dim=1)[0][..., None, None] if T_norm is None else T_norm
    else:
        T_norm = _c2ws[..., :3, 3].norm(dim=-1).max(dim=1)[0][..., None, None] if T_norm is None else T_norm

    _c2ws[..., :3, 3] = _c2ws[..., :3, 3] / (T_norm + 1e-2)

    R = matrix_to_quaternion(_c2ws[..., :3, :3])
    T = _c2ws[..., :3, 3]
    cameras = torch.cat([R.float(), T.float(), cameras[..., 7:]], dim=-1)

    if return_meta:
        return cameras, ref_w2c, T_norm
    else:
        return cameras

def create_rays(cameras, h, w, uv_offset=None):
    prefix_shape = cameras.shape[:-1]
    cameras = cameras.flatten(0, -2)
    device = cameras.device
    N = cameras.shape[0]

    c2w = torch.eye(4, device=device)[None].repeat(N, 1, 1)
    c2w[:, :3, :3] = quaternion_to_matrix(cameras[:, :4])
    c2w[:, :3, 3] = cameras[:, 4:7]

    # fx, fy, cx, cy should be divided by original H, W
    fx, fy, cx, cy = cameras[:, 7:].chunk(4, -1)

    fx, cx = fx * w, cx * w
    fy, cy = fy * h, cy * h

    inds = torch.arange(0, h*w, device=device).expand(N, h*w)
        
    i = inds % w + 0.5
    j = torch.div(inds, w, rounding_mode='floor') + 0.5

    u = i / cx + (uv_offset[..., 0].reshape(N, h*w) if uv_offset is not None else 0) 
    v = j / cy + (uv_offset[..., 1].reshape(N, h*w) if uv_offset is not None else 0) 

    zs = - torch.ones_like(i)
    xs = - (u - 1) * cx / fx * zs
    ys = (v - 1) * cy / fy * zs
    directions = torch.stack((xs, ys, zs), dim=-1)

    rays_d = F.normalize(directions @ c2w[:, :3, :3].transpose(-1, -2), dim=-1)

    rays_o = c2w[..., :3, 3] # [B, 3]
    rays_o = rays_o[..., None, :].expand_as(rays_d)

    rays_o = rays_o.reshape(*prefix_shape, h, w, 3)
    rays_d = rays_d.reshape(*prefix_shape, h, w, 3)

    return rays_o, rays_d

def matrix_to_square(mat):
    l = len(mat.shape)
    if l==3:
        return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],1,1).to(mat.device)],dim=1)
    elif l==4:
        return torch.cat([mat, torch.tensor([0,0,0,1]).repeat(mat.shape[0],mat.shape[1],1,1).to(mat.device)],dim=2)

def export_ply_for_gaussians(path, gaussians, opacity_threshold=0.00, T_norm=None):

    sh_degree = int(math.sqrt((gaussians.shape[-1] - sum([3, 1, 3, 4])) / 3 - 1))

    xyz, opacity, scale, rotation, feature = gaussians.float().split([3, 1, 3, 4, (sh_degree + 1)**2 * 3], dim=-1)
     
    means3D = xyz.contiguous().float()
    opacity = opacity.contiguous().float()
    scales = scale.contiguous().float()
    rotations = rotation.contiguous().float()
    shs = feature.contiguous().float() # [N, 1, 3]

    # print(means3D.shape, opacity.shape, scales.shape, rotations.shape, shs.shape)

    # prune by opacity
    if opacity_threshold > 0:
        mask = opacity[..., 0] >= opacity_threshold
        means3D = means3D[mask]
        opacity = opacity[mask]
        scales = scales[mask]
        rotations = rotations[mask]
        shs = shs[mask]

        print("Gaussian percentage: ", mask.float().mean())

    if T_norm is not None:
        means3D = means3D * T_norm.item()
        scales = scales * T_norm.item()

    # invert activation to make it compatible with the original ply format
    opacity = torch.log(opacity/(1-opacity))
    scales = torch.log(scales + 1e-8)

    xyzs = means3D.detach() # .cpu().numpy()
    f_dc = shs.detach().flatten(start_dim=1).contiguous() #.cpu().numpy()
    opacities = opacity.detach() #.cpu().numpy()
    scales = scales.detach() #.cpu().numpy()
    rotations = rotations.detach() #.cpu().numpy()

    l = ['x', 'y', 'z']
    # All channels except the 3 DC
    for i in range(f_dc.shape[1]):
        l.append('f_dc_{}'.format(i))
    l.append('opacity')
    for i in range(scales.shape[1]):
        l.append('scale_{}'.format(i))
    for i in range(rotations.shape[1]):
        l.append('rot_{}'.format(i))

    dtype_full = [(attribute, 'f4') for attribute in l]

    # 最优化方案:使用numpy的recarray直接创建
    attributes = torch.cat((xyzs, f_dc, opacities, scales, rotations), dim=1).cpu().numpy()
    
    # 使用recarray直接创建,避免循环和类型转换
    elements = np.rec.fromarrays([attributes[:, i] for i in range(attributes.shape[1])], names=l, formats=['f4'] * len(l))
    el = PlyElement.describe(elements, 'vertex')

    print(path)

    PlyData([el]).write(path)

    # plydata = PlyData([el])

    # vert = plydata["vertex"]
    # sorted_indices = np.argsort(
    #     -np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
    #     / (1 + np.exp(-vert["opacity"]))
    # )
    # buffer = BytesIO()
    # for idx in sorted_indices:
    #     v = plydata["vertex"][idx]
    #     position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
    #     scales = np.exp(
    #         np.array(
    #             [v["scale_0"], v["scale_1"], v["scale_2"]],
    #             dtype=np.float32,
    #         )
    #     )
    #     rot = np.array(
    #         [v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
    #         dtype=np.float32,
    #     )
    #     SH_C0 = 0.28209479177387814
    #     color = np.array(
    #         [
    #             0.5 + SH_C0 * v["f_dc_0"],
    #             0.5 + SH_C0 * v["f_dc_1"],
    #             0.5 + SH_C0 * v["f_dc_2"],
    #             1 / (1 + np.exp(-v["opacity"])),
    #         ]
    #     )
    #     buffer.write(position.tobytes())
    #     buffer.write(scales.tobytes())
    #     buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
    #     buffer.write(
    #         ((rot / np.linalg.norm(rot)) * 128 + 128)
    #         .clip(0, 255)
    #         .astype(np.uint8)
    #         .tobytes()
    #     )

    # with open(path + '.splat', "wb") as f:
    #     f.write(buffer.getvalue())

@torch.amp.autocast(device_type="cuda", enabled=False)
def quaternion_slerp(
    q0, q1, fraction, spin: int = 0, shortestpath: bool = True
):
    """Return spherical linear interpolation between two quaternions.
    Args:
        quat0: first quaternion
        quat1: second quaternion
        fraction: how much to interpolate between quat0 vs quat1 (if 0, closer to quat0; if 1, closer to quat1)
        spin: how much of an additional spin to place on the interpolation
        shortestpath: whether to return the short or long path to rotation
    """
    d = (q0 * q1).sum(-1)
    if shortestpath:
        # invert rotation
        d[d < 0.0] = -d[d < 0.0]
        q1[d < 0.0] = q1[d < 0.0]

    _d = d.clamp(0, 1.0)

    # theta = torch.arccos(d) * fraction
    # q2 = q1 - q0 * d
    # q2 = q2 / (q2.norm(dim=-1) + 1e-10)
    
    # return torch.cos(theta) * q0 + torch.sin(theta) * q2

    angle = torch.acos(_d) + spin * math.pi
    isin = 1.0 / (torch.sin(angle)+ 1e-10)
    q0_ = q0 * (torch.sin((1.0 - fraction) * angle) * isin)[..., None]
    q1_ = q1 * (torch.sin(fraction * angle) * isin)[..., None]

    q = q0_ + q1_

    q[angle < 1e-5] = q0[angle < 1e-5]
    # q[fraction < 1e-5] = q0[fraction < 1e-5]
    # q[fraction > 1 - 1e-5] = q1[fraction > 1 - 1e-5]
    # q[(d.abs() - 1).abs() < 1e-5] = q0[(d.abs() - 1).abs() < 1e-5]

    return q

def sample_from_two_pose(pose_a, pose_b, fraction, noise_strengths=[0, 0]):
    """
    Args:
        pose_a: first pose
        pose_b: second pose
        fraction
    """

    quat_a = pose_a[..., :4]
    quat_b = pose_b[..., :4]

    dot = torch.sum(quat_a * quat_b, dim=-1, keepdim=True)
    quat_b = torch.where(dot < 0, -quat_b, quat_b)

    quaternion = quaternion_slerp(quat_a, quat_b, fraction)
    quaternion = torch.nn.functional.normalize(quaternion + torch.randn_like(quaternion) * noise_strengths[0], dim=-1)

    T = (1 - fraction)[:, None] * pose_a[..., 4:] + fraction[:, None] * pose_b[..., 4:]
    T = T + torch.randn_like(T) * noise_strengths[1]

    new_pose = pose_a.clone()
    new_pose[..., :4] = quaternion
    new_pose[..., 4:] = T
    return new_pose

def sample_from_dense_cameras(dense_cameras, t, noise_strengths=[0, 0, 0, 0]):
    N, C = dense_cameras.shape
    M = t.shape
    
    left = torch.floor(t * (N-1)).long().clamp(0, N-2)
    right = left + 1
    fraction = t * (N-1) - left

    a = torch.gather(dense_cameras, 0, left[..., None].repeat(1, C))
    b = torch.gather(dense_cameras, 0, right[..., None].repeat(1, C))

    new_pose = sample_from_two_pose(a[:, :7], 
                                    b[:, :7], fraction, noise_strengths=noise_strengths[:2])

    new_ins = (1 - fraction)[:, None] * a[:, 7:] + fraction[:, None] * b[:, 7:]

    return torch.cat([new_pose, new_ins], dim=1)