Spaces:
Sleeping
Sleeping
edbeeching
commited on
Commit
·
61d5b4a
1
Parent(s):
b26773a
add model gen params
Browse files
app.py
CHANGED
|
@@ -70,54 +70,69 @@ SUPPORTED_MODELS = [
|
|
| 70 |
|
| 71 |
|
| 72 |
def fetch_model_generation_params(model_name: str) -> dict:
|
| 73 |
-
"""Fetch generation parameters
|
| 74 |
default_params = {
|
| 75 |
"max_tokens": 1024,
|
| 76 |
"temperature": 0.7,
|
| 77 |
"top_k": 50,
|
| 78 |
-
"top_p": 0.95
|
|
|
|
|
|
|
| 79 |
}
|
| 80 |
|
| 81 |
try:
|
| 82 |
-
print(f"Attempting to fetch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Try to load the generation config
|
|
|
|
| 85 |
try:
|
| 86 |
-
gen_config = GenerationConfig.from_pretrained(model_name, force_download=False)
|
| 87 |
print(f"Successfully loaded generation config for {model_name}")
|
| 88 |
-
print(f"Config attributes: {dir(gen_config)}")
|
| 89 |
except Exception as e:
|
| 90 |
print(f"Failed to load GenerationConfig for {model_name}: {e}")
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
"temperature": getattr(gen_config, 'temperature', default_params["temperature"]),
|
| 115 |
-
"top_k": getattr(gen_config, 'top_k', default_params["top_k"]),
|
| 116 |
-
"top_p": getattr(gen_config, 'top_p', default_params["top_p"])
|
| 117 |
-
}
|
| 118 |
|
| 119 |
# Ensure parameters are within valid ranges
|
| 120 |
-
params["max_tokens"] = max(256, min(params["max_tokens"], MAX_TOKENS))
|
| 121 |
params["temperature"] = max(0.0, min(params["temperature"], 2.0))
|
| 122 |
params["top_k"] = max(5, min(params["top_k"], 100))
|
| 123 |
params["top_p"] = max(0.0, min(params["top_p"], 1.0))
|
|
@@ -126,7 +141,7 @@ def fetch_model_generation_params(model_name: str) -> dict:
|
|
| 126 |
return params
|
| 127 |
|
| 128 |
except Exception as e:
|
| 129 |
-
print(f"Could not fetch
|
| 130 |
return default_params
|
| 131 |
|
| 132 |
|
|
@@ -146,8 +161,12 @@ def update_generation_params(model_name: str):
|
|
| 146 |
if model_name in MODEL_GEN_PARAMS_CACHE:
|
| 147 |
params = MODEL_GEN_PARAMS_CACHE[model_name]
|
| 148 |
print(f"Found cached params for {model_name}: {params}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
return (
|
| 150 |
-
gr.update(value=params["max_tokens"]),
|
| 151 |
gr.update(value=params["temperature"]), # temperature
|
| 152 |
gr.update(value=params["top_k"]), # top_k
|
| 153 |
gr.update(value=params["top_p"]) # top_p
|
|
@@ -156,7 +175,7 @@ def update_generation_params(model_name: str):
|
|
| 156 |
# Fallback to defaults if model not in cache
|
| 157 |
print(f"Model {model_name} not found in cache, using defaults")
|
| 158 |
return (
|
| 159 |
-
gr.update(value=1024), # max_tokens
|
| 160 |
gr.update(value=0.7), # temperature
|
| 161 |
gr.update(value=50), # top_k
|
| 162 |
gr.update(value=0.95) # top_p
|
|
@@ -183,7 +202,9 @@ def cache_all_model_params():
|
|
| 183 |
"max_tokens": 1024,
|
| 184 |
"temperature": 0.7,
|
| 185 |
"top_k": 50,
|
| 186 |
-
"top_p": 0.95
|
|
|
|
|
|
|
| 187 |
}
|
| 188 |
MODEL_GEN_PARAMS_CACHE[model_name] = default_params
|
| 189 |
print(f"Using default params for {model_name}: {default_params}")
|
|
|
|
| 70 |
|
| 71 |
|
| 72 |
def fetch_model_generation_params(model_name: str) -> dict:
|
| 73 |
+
"""Fetch generation parameters and model config from the hub"""
|
| 74 |
default_params = {
|
| 75 |
"max_tokens": 1024,
|
| 76 |
"temperature": 0.7,
|
| 77 |
"top_k": 50,
|
| 78 |
+
"top_p": 0.95,
|
| 79 |
+
"max_position_embeddings": 2048,
|
| 80 |
+
"recommended_max_tokens": 1024
|
| 81 |
}
|
| 82 |
|
| 83 |
try:
|
| 84 |
+
print(f"Attempting to fetch configs for: {model_name}")
|
| 85 |
+
|
| 86 |
+
# Always try to load the model config first for max_position_embeddings
|
| 87 |
+
model_config = None
|
| 88 |
+
max_position_embeddings = default_params["max_position_embeddings"]
|
| 89 |
+
|
| 90 |
+
try:
|
| 91 |
+
output_dataset_token = os.getenv("OUTPUT_DATASET_TOKEN")
|
| 92 |
+
model_config = AutoConfig.from_pretrained(model_name, force_download=False, token=output_dataset_token)
|
| 93 |
+
max_position_embeddings = getattr(model_config, 'max_position_embeddings', default_params["max_position_embeddings"])
|
| 94 |
+
print(f"Loaded AutoConfig for {model_name}, max_position_embeddings: {max_position_embeddings}")
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"Failed to load AutoConfig for {model_name}: {e}")
|
| 97 |
+
|
| 98 |
+
# Calculate recommended max tokens (conservative estimate)
|
| 99 |
+
# Leave some room for the prompt, so use ~75% of max_position_embeddings
|
| 100 |
+
recommended_max_tokens = min(int(max_position_embeddings * 0.75), MAX_TOKENS)
|
| 101 |
+
recommended_max_tokens = max(256, recommended_max_tokens) # Ensure minimum
|
| 102 |
|
| 103 |
# Try to load the generation config
|
| 104 |
+
gen_config = None
|
| 105 |
try:
|
| 106 |
+
gen_config = GenerationConfig.from_pretrained(model_name, force_download=False, token=output_dataset_token)
|
| 107 |
print(f"Successfully loaded generation config for {model_name}")
|
|
|
|
| 108 |
except Exception as e:
|
| 109 |
print(f"Failed to load GenerationConfig for {model_name}: {e}")
|
| 110 |
+
|
| 111 |
+
# Extract parameters from generation config or use model-specific defaults
|
| 112 |
+
if gen_config:
|
| 113 |
+
params = {
|
| 114 |
+
"max_tokens": getattr(gen_config, 'max_new_tokens', None) or getattr(gen_config, 'max_length', recommended_max_tokens),
|
| 115 |
+
"temperature": getattr(gen_config, 'temperature', default_params["temperature"]),
|
| 116 |
+
"top_k": getattr(gen_config, 'top_k', default_params["top_k"]),
|
| 117 |
+
"top_p": getattr(gen_config, 'top_p', default_params["top_p"]),
|
| 118 |
+
"max_position_embeddings": max_position_embeddings,
|
| 119 |
+
"recommended_max_tokens": recommended_max_tokens
|
| 120 |
+
}
|
| 121 |
+
else:
|
| 122 |
+
# Use model-specific defaults based on model name
|
| 123 |
+
if "qwen" in model_name.lower():
|
| 124 |
+
params = {"max_tokens": recommended_max_tokens, "temperature": 0.7, "top_k": 50, "top_p": 0.8, "max_position_embeddings": max_position_embeddings, "recommended_max_tokens": recommended_max_tokens}
|
| 125 |
+
elif "llama" in model_name.lower():
|
| 126 |
+
params = {"max_tokens": recommended_max_tokens, "temperature": 0.6, "top_k": 40, "top_p": 0.9, "max_position_embeddings": max_position_embeddings, "recommended_max_tokens": recommended_max_tokens}
|
| 127 |
+
elif "ernie" in model_name.lower():
|
| 128 |
+
params = {"max_tokens": min(recommended_max_tokens, 1024), "temperature": 0.7, "top_k": 50, "top_p": 0.95, "max_position_embeddings": max_position_embeddings, "recommended_max_tokens": recommended_max_tokens}
|
| 129 |
+
else:
|
| 130 |
+
params = dict(default_params)
|
| 131 |
+
params["max_position_embeddings"] = max_position_embeddings
|
| 132 |
+
params["recommended_max_tokens"] = recommended_max_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# Ensure parameters are within valid ranges
|
| 135 |
+
params["max_tokens"] = max(256, min(params["max_tokens"], MAX_TOKENS, params["recommended_max_tokens"]))
|
| 136 |
params["temperature"] = max(0.0, min(params["temperature"], 2.0))
|
| 137 |
params["top_k"] = max(5, min(params["top_k"], 100))
|
| 138 |
params["top_p"] = max(0.0, min(params["top_p"], 1.0))
|
|
|
|
| 141 |
return params
|
| 142 |
|
| 143 |
except Exception as e:
|
| 144 |
+
print(f"Could not fetch configs for {model_name}: {e}")
|
| 145 |
return default_params
|
| 146 |
|
| 147 |
|
|
|
|
| 161 |
if model_name in MODEL_GEN_PARAMS_CACHE:
|
| 162 |
params = MODEL_GEN_PARAMS_CACHE[model_name]
|
| 163 |
print(f"Found cached params for {model_name}: {params}")
|
| 164 |
+
|
| 165 |
+
# Set the max_tokens slider maximum to the model's recommended max
|
| 166 |
+
max_tokens_limit = min(params.get("recommended_max_tokens", MAX_TOKENS), MAX_TOKENS)
|
| 167 |
+
|
| 168 |
return (
|
| 169 |
+
gr.update(value=params["max_tokens"], maximum=max_tokens_limit), # max_tokens with dynamic maximum
|
| 170 |
gr.update(value=params["temperature"]), # temperature
|
| 171 |
gr.update(value=params["top_k"]), # top_k
|
| 172 |
gr.update(value=params["top_p"]) # top_p
|
|
|
|
| 175 |
# Fallback to defaults if model not in cache
|
| 176 |
print(f"Model {model_name} not found in cache, using defaults")
|
| 177 |
return (
|
| 178 |
+
gr.update(value=1024, maximum=MAX_TOKENS), # max_tokens
|
| 179 |
gr.update(value=0.7), # temperature
|
| 180 |
gr.update(value=50), # top_k
|
| 181 |
gr.update(value=0.95) # top_p
|
|
|
|
| 202 |
"max_tokens": 1024,
|
| 203 |
"temperature": 0.7,
|
| 204 |
"top_k": 50,
|
| 205 |
+
"top_p": 0.95,
|
| 206 |
+
"max_position_embeddings": 2048,
|
| 207 |
+
"recommended_max_tokens": 1024
|
| 208 |
}
|
| 209 |
MODEL_GEN_PARAMS_CACHE[model_name] = default_params
|
| 210 |
print(f"Using default params for {model_name}: {default_params}")
|