Spaces:
Sleeping
Sleeping
| """ | |
| from transformers import pipeline | |
| import gradio as gr | |
| import torch | |
| model = "neuralmind/bert-base-portuguese-cased" | |
| pipe = pipeline('sentiment-analysis', model=model) | |
| def get_sentiment(input_text): | |
| return pipe(input_text) | |
| iface = gr.Interface(fn=get_sentiment, | |
| inputs='text', | |
| outputs=['text'], | |
| title='Sentiment Analysis', | |
| description='Obtenha o sentimento do texto de entrada:' | |
| ) | |
| iface.launch(inline=False)""" | |
| from transformers import pipeline | |
| import gradio as gr | |
| import torch | |
| model = "neuralmind/bert-base-portuguese-cased" | |
| pipe = pipeline('sentiment-analysis', model=model) | |
| def get_sentiment(input_text): | |
| return pipe(input_text) | |
| results = pipe(input_text) | |
| # Extract the label and score | |
| label = results[0]['label'] | |
| score = results[0]['score'] | |
| threshold = 0.5 | |
| if label == 'LABEL_1' and score > sentiment_threshold: # Positive sentiment | |
| return 'POSITIVO' | |
| else: label == 'LABEL_0' and score <= sentiment_threshold: # Negative sentiment | |
| return 'NEGATIVO' | |
| iface = gr.Interface(fn=get_sentiment, | |
| inputs='text', | |
| outputs='text', | |
| title='Sentiment Analysis', | |
| description='Obtenha o sentimento do texto de entrada:' | |
| ) | |
| iface.launch(inline=False) | |