Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
-
Swin/CAFormer AI detection
|
| 4 |
-------------------------------------------------------------------
|
| 5 |
• Swin-V2 / V4 : 2-class (AI vs. Non-AI)
|
| 6 |
• Swin-V7 / V8 / V9 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
• CAFormer-V10 : 4-class (photo / anime × AI / Non-AI)
|
|
|
|
| 8 |
-------------------------------------------------------------------
|
| 9 |
Author: telecomadm1145
|
| 10 |
"""
|
|
@@ -16,6 +17,9 @@ from PIL import Image
|
|
| 16 |
import gradio as gr
|
| 17 |
from huggingface_hub import hf_hub_download
|
| 18 |
from safetensors.torch import load_file # Added for .safetensors support
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# --------------------------------------------------
|
| 21 |
# 1. Model & Checkpoint Meta-data
|
|
@@ -29,6 +33,9 @@ HF_FILENAMES = {
|
|
| 29 |
"V8": "swin_classifier_4class_fp16_v8_epoch7_acc9740.pth",
|
| 30 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
| 31 |
"V1-CAFormer": "caformer_b36_4class.safetensors",
|
|
|
|
|
|
|
|
|
|
| 32 |
}
|
| 33 |
|
| 34 |
CKPT_META = {
|
|
@@ -46,12 +53,24 @@ CKPT_META = {
|
|
| 46 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 47 |
"V1-CAFormer": { "n_cls": 4, "head": "v7", "backbone": "caformer_b36.sail_in22k_ft_in1k_384",
|
| 48 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
}
|
| 50 |
|
| 51 |
DEFAULT_CKPT = "V1-CAFormer"
|
| 52 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 53 |
SEED = 4421
|
| 54 |
DROP_RATE = 0.1
|
|
|
|
| 55 |
|
| 56 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 57 |
torch.manual_seed(SEED); np.random.seed(SEED)
|
|
@@ -60,6 +79,55 @@ print(f"Using device: {device}")
|
|
| 60 |
model, current_ckpt = None, None
|
| 61 |
current_meta = None
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# Renamed to ImageClassifier for clarity, but keeping original name to avoid breaking changes if subclassed elsewhere.
|
| 64 |
class SwinClassifier(nn.Module):
|
| 65 |
def __init__(self, model_name, num_classes, pretrained=True,
|
|
@@ -126,20 +194,36 @@ def load_model(ckpt_name: str):
|
|
| 126 |
print(f"\n🔄 Switching to {ckpt_name} ...")
|
| 127 |
meta = CKPT_META[ckpt_name]
|
| 128 |
ckpt_filename = HF_FILENAMES[ckpt_name]
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
print(f"Checkpoint: {ckpt_file}")
|
| 135 |
|
| 136 |
-
# Build model structure
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
# Compatible load for .pth and .safetensors
|
| 145 |
if ckpt_filename.endswith(".safetensors"):
|
|
@@ -173,7 +257,19 @@ def predict(image: Image.Image,
|
|
| 173 |
if image is None: return None
|
| 174 |
|
| 175 |
load_model(ckpt_name)
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
inp = tfm(image).unsqueeze(0).to(device)
|
| 178 |
|
| 179 |
probs = F.softmax(model(inp), dim=1)[0].cpu()
|
|
@@ -193,7 +289,7 @@ def launch():
|
|
| 193 |
gr.Markdown("# AI Detector")
|
| 194 |
gr.Markdown(
|
| 195 |
"Choose a model checkpoint on the left, upload an image, "
|
| 196 |
-
"and click **Run** to see predictions. Checkpoint V7+ outputs 4 classes."
|
| 197 |
)
|
| 198 |
|
| 199 |
with gr.Row():
|
|
@@ -206,7 +302,7 @@ def launch():
|
|
| 206 |
)
|
| 207 |
sel_interp = gr.Radio(
|
| 208 |
["bilinear", "bicubic", "nearest"],
|
| 209 |
-
value="bicubic", label="Resize Interpolation"
|
| 210 |
)
|
| 211 |
|
| 212 |
in_img = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
"""
|
| 3 |
+
Swin/CAFormer/DINOv2 AI detection
|
| 4 |
-------------------------------------------------------------------
|
| 5 |
• Swin-V2 / V4 : 2-class (AI vs. Non-AI)
|
| 6 |
• Swin-V7 / V8 / V9 : 4-class (photo / anime × AI / Non-AI)
|
| 7 |
• CAFormer-V10 : 4-class (photo / anime × AI / Non-AI)
|
| 8 |
+
• DINOv2-4class : 4-class (photo / anime × AI / Non-AI)
|
| 9 |
-------------------------------------------------------------------
|
| 10 |
Author: telecomadm1145
|
| 11 |
"""
|
|
|
|
| 17 |
import gradio as gr
|
| 18 |
from huggingface_hub import hf_hub_download
|
| 19 |
from safetensors.torch import load_file # Added for .safetensors support
|
| 20 |
+
# Added for DINOv2 model
|
| 21 |
+
from transformers import AutoModel
|
| 22 |
+
from torchvision import transforms
|
| 23 |
|
| 24 |
# --------------------------------------------------
|
| 25 |
# 1. Model & Checkpoint Meta-data
|
|
|
|
| 33 |
"V8": "swin_classifier_4class_fp16_v8_epoch7_acc9740.pth",
|
| 34 |
"V9": "swin_classifier_4class_fp16_v9_acc9861.pth",
|
| 35 |
"V1-CAFormer": "caformer_b36_4class.safetensors",
|
| 36 |
+
"V2-CAFormer": "caformer_b36_4class_95.safetensors",
|
| 37 |
+
"V2.5-CAFormer": "caformer_b36_4class_96.safetensors",
|
| 38 |
+
"DINOv2-4class": "dinov2_4class.safetensors", # Added DINOv2 checkpoint
|
| 39 |
}
|
| 40 |
|
| 41 |
CKPT_META = {
|
|
|
|
| 53 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 54 |
"V1-CAFormer": { "n_cls": 4, "head": "v7", "backbone": "caformer_b36.sail_in22k_ft_in1k_384",
|
| 55 |
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 56 |
+
"V2-CAFormer": { "n_cls": 4, "head": "v7", "backbone": "caformer_b36.sail_in22k_ft_in1k_384",
|
| 57 |
+
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 58 |
+
"V2.5-CAFormer": { "n_cls": 4, "head": "v7", "backbone": "caformer_b36.sail_in22k_ft_in1k_384",
|
| 59 |
+
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]},
|
| 60 |
+
# Added DINOv2 metadata
|
| 61 |
+
"DINOv2-4class": {
|
| 62 |
+
"model_type": "dinov2",
|
| 63 |
+
"backbone": 'facebook/dinov2-base',
|
| 64 |
+
"n_cls": 4,
|
| 65 |
+
"names": ["non_ai", "ai", "ani_non_ai", "ani_ai"]
|
| 66 |
+
},
|
| 67 |
}
|
| 68 |
|
| 69 |
DEFAULT_CKPT = "V1-CAFormer"
|
| 70 |
LOCAL_CKPT_DIR = "./checkpoints"
|
| 71 |
SEED = 4421
|
| 72 |
DROP_RATE = 0.1
|
| 73 |
+
DROPOUT_RATE = 0.1 # From train.py for DINOv2
|
| 74 |
|
| 75 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 76 |
torch.manual_seed(SEED); np.random.seed(SEED)
|
|
|
|
| 79 |
model, current_ckpt = None, None
|
| 80 |
current_meta = None
|
| 81 |
|
| 82 |
+
# --- Start of code from train.py ---
|
| 83 |
+
class DINOv2Classifier(nn.Module):
|
| 84 |
+
def __init__(self, model_name, num_classes):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.backbone = AutoModel.from_pretrained(model_name)
|
| 87 |
+
self.weight_self_attention = nn.MultiheadAttention(
|
| 88 |
+
embed_dim=self.backbone.config.hidden_size,
|
| 89 |
+
num_heads=self.backbone.config.num_attention_heads,
|
| 90 |
+
dropout=self.backbone.config.hidden_dropout_prob,
|
| 91 |
+
batch_first=True
|
| 92 |
+
)
|
| 93 |
+
self.weight_mlp = nn.Sequential(
|
| 94 |
+
nn.Linear(self.backbone.config.hidden_size, self.backbone.config.hidden_size * 4),
|
| 95 |
+
nn.LayerNorm(self.backbone.config.hidden_size * 4),
|
| 96 |
+
nn.GELU(),
|
| 97 |
+
nn.Linear(self.backbone.config.hidden_size * 4, 1)
|
| 98 |
+
)
|
| 99 |
+
self.classifier = nn.Sequential(
|
| 100 |
+
nn.Dropout(DROPOUT_RATE),
|
| 101 |
+
nn.Linear(self.backbone.config.hidden_size, self.backbone.config.hidden_size),
|
| 102 |
+
nn.LayerNorm(self.backbone.config.hidden_size),
|
| 103 |
+
nn.GELU(),
|
| 104 |
+
nn.Dropout(DROPOUT_RATE),
|
| 105 |
+
nn.Linear(self.backbone.config.hidden_size, num_classes)
|
| 106 |
+
)
|
| 107 |
+
nn.init.xavier_uniform_(self.weight_self_attention.in_proj_weight)
|
| 108 |
+
nn.init.xavier_uniform_(self.weight_self_attention.out_proj.weight)
|
| 109 |
+
nn.init.constant_(self.weight_self_attention.out_proj.bias, 0)
|
| 110 |
+
|
| 111 |
+
for module in [self.weight_mlp, self.classifier]:
|
| 112 |
+
if isinstance(module, nn.Linear):
|
| 113 |
+
nn.init.xavier_uniform_(module.weight)
|
| 114 |
+
nn.init.constant_(module.bias, 0)
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
outputs = self.backbone(x)
|
| 118 |
+
attn_output, _ = self.weight_self_attention(
|
| 119 |
+
outputs.last_hidden_state,
|
| 120 |
+
outputs.last_hidden_state,
|
| 121 |
+
outputs.last_hidden_state,
|
| 122 |
+
)
|
| 123 |
+
raw_weights = self.weight_mlp(attn_output)
|
| 124 |
+
raw_weights = raw_weights.squeeze(-1)
|
| 125 |
+
pooling_weights = torch.softmax(raw_weights, dim=-1)
|
| 126 |
+
pooled_output = torch.sum(outputs.last_hidden_state * pooling_weights.unsqueeze(-1), dim=1)
|
| 127 |
+
return self.classifier(pooled_output)
|
| 128 |
+
# --- End of code from train.py ---
|
| 129 |
+
|
| 130 |
+
|
| 131 |
# Renamed to ImageClassifier for clarity, but keeping original name to avoid breaking changes if subclassed elsewhere.
|
| 132 |
class SwinClassifier(nn.Module):
|
| 133 |
def __init__(self, model_name, num_classes, pretrained=True,
|
|
|
|
| 194 |
print(f"\n🔄 Switching to {ckpt_name} ...")
|
| 195 |
meta = CKPT_META[ckpt_name]
|
| 196 |
ckpt_filename = HF_FILENAMES[ckpt_name]
|
| 197 |
+
|
| 198 |
+
# Check if the checkpoint is DINOv2 and handle its local path
|
| 199 |
+
if meta.get("model_type") == "dinov2":
|
| 200 |
+
# Assume DINOv2 model is local, as generated by train.py
|
| 201 |
+
ckpt_file = ckpt_filename
|
| 202 |
+
if not os.path.exists(ckpt_file):
|
| 203 |
+
raise FileNotFoundError(f"DINOv2 checkpoint not found at {ckpt_file}. Please run train.py first.")
|
| 204 |
+
else:
|
| 205 |
+
# Download other models from HF Hub
|
| 206 |
+
ckpt_file = hf_hub_download(
|
| 207 |
+
repo_id=REPO_ID,
|
| 208 |
+
filename=ckpt_filename,
|
| 209 |
+
local_dir=LOCAL_CKPT_DIR, force_download=False
|
| 210 |
+
)
|
| 211 |
print(f"Checkpoint: {ckpt_file}")
|
| 212 |
|
| 213 |
+
# Build model structure based on model_type
|
| 214 |
+
if meta.get("model_type") == "dinov2":
|
| 215 |
+
model = DINOv2Classifier(
|
| 216 |
+
model_name=meta["backbone"],
|
| 217 |
+
num_classes=meta["n_cls"]
|
| 218 |
+
).to(device)
|
| 219 |
+
else: # Existing logic for Swin/CAFormer
|
| 220 |
+
model = SwinClassifier(
|
| 221 |
+
meta["backbone"],
|
| 222 |
+
num_classes=meta["n_cls"],
|
| 223 |
+
pretrained=False,
|
| 224 |
+
head_version=meta.get("head", "v4")
|
| 225 |
+
).to(device)
|
| 226 |
+
|
| 227 |
|
| 228 |
# Compatible load for .pth and .safetensors
|
| 229 |
if ckpt_filename.endswith(".safetensors"):
|
|
|
|
| 257 |
if image is None: return None
|
| 258 |
|
| 259 |
load_model(ckpt_name)
|
| 260 |
+
|
| 261 |
+
# Select transform based on the current model type
|
| 262 |
+
if current_meta.get("model_type") == "dinov2":
|
| 263 |
+
# DINOv2 specific transform from train.py
|
| 264 |
+
tfm = transforms.Compose([
|
| 265 |
+
transforms.Resize((224, 224)),
|
| 266 |
+
transforms.ToTensor(),
|
| 267 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 268 |
+
])
|
| 269 |
+
else:
|
| 270 |
+
# Original transform logic for Swin/CAFormer
|
| 271 |
+
tfm = build_transform(False, interpolation)
|
| 272 |
+
|
| 273 |
inp = tfm(image).unsqueeze(0).to(device)
|
| 274 |
|
| 275 |
probs = F.softmax(model(inp), dim=1)[0].cpu()
|
|
|
|
| 289 |
gr.Markdown("# AI Detector")
|
| 290 |
gr.Markdown(
|
| 291 |
"Choose a model checkpoint on the left, upload an image, "
|
| 292 |
+
"and click **Run** to see predictions. Checkpoint V7+ and DINOv2 outputs 4 classes."
|
| 293 |
)
|
| 294 |
|
| 295 |
with gr.Row():
|
|
|
|
| 302 |
)
|
| 303 |
sel_interp = gr.Radio(
|
| 304 |
["bilinear", "bicubic", "nearest"],
|
| 305 |
+
value="bicubic", label="Resize Interpolation (for Swin/CAFormer)"
|
| 306 |
)
|
| 307 |
|
| 308 |
in_img = gr.Image(type="pil", label="Upload Image")
|