Hunyuan3D-Part / P3-SAM /demo /auto_mask.py
root
add our app
7b75adb
raw
history blame
52.9 kB
import os
import sys
import torch
import torch.nn as nn
import numpy as np
import argparse
import trimesh
from sklearn.decomposition import PCA
import fpsample
from tqdm import tqdm
import threading
import random
# from tqdm.notebook import tqdm
import time
import copy
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
from collections import defaultdict
import numba
from numba import njit
sys.path.append('..')
from model import build_P3SAM, load_state_dict
class P3SAM(nn.Module):
def __init__(self):
super().__init__()
build_P3SAM(self)
def load_state_dict(self,
ckpt_path=None,
state_dict=None,
strict=True,
assign=False,
ignore_seg_mlp=False,
ignore_seg_s2_mlp=False,
ignore_iou_mlp=False):
load_state_dict(self,
ckpt_path=ckpt_path,
state_dict=state_dict,
strict=strict,
assign=assign,
ignore_seg_mlp=ignore_seg_mlp,
ignore_seg_s2_mlp=ignore_seg_s2_mlp,
ignore_iou_mlp=ignore_iou_mlp)
def forward(self, feats, points, point_prompt, iter=1):
'''
feats: [K, N, 512]
points: [K, N, 3]
point_prompt: [K, N, 3]
'''
# print(feats.shape, points.shape, point_prompt.shape)
point_num = points.shape[1]
feats = feats.transpose(0, 1) # [N, K, 512]
points = points.transpose(0, 1) # [N, K, 3]
point_prompt = point_prompt.transpose(0, 1) # [N, K, 3]
feats_seg = torch.cat([feats, points, point_prompt], dim=-1) # [N, K, 512+3+3]
# 预测mask stage-1
pred_mask_1 = self.seg_mlp_1(feats_seg).squeeze(-1) # [N, K]
pred_mask_2 = self.seg_mlp_2(feats_seg).squeeze(-1) # [N, K]
pred_mask_3 = self.seg_mlp_3(feats_seg).squeeze(-1) # [N, K]
pred_mask = torch.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], dim=-1
) # [N, K, 3]
for _ in range(iter):
# 预测mask stage-2
feats_seg_2 = torch.cat([feats_seg, pred_mask], dim=-1) # [N, K, 512+3+3+3]
feats_seg_global = self.seg_s2_mlp_g(feats_seg_2) # [N, K, 512]
feats_seg_global = torch.max(feats_seg_global, dim=0).values # [K, 512]
feats_seg_global = feats_seg_global.unsqueeze(0).repeat(
point_num, 1, 1
) # [N, K, 512]
feats_seg_3 = torch.cat(
[feats_seg_global, feats_seg_2], dim=-1
) # [N, K, 512+3+3+3+512]
pred_mask_s2_1 = self.seg_s2_mlp_1(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_2 = self.seg_s2_mlp_2(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2_3 = self.seg_s2_mlp_3(feats_seg_3).squeeze(-1) # [N, K]
pred_mask_s2 = torch.stack(
[pred_mask_s2_1, pred_mask_s2_2, pred_mask_s2_3], dim=-1
) # [N,, K 3]
pred_mask = pred_mask_s2
mask_1 = torch.sigmoid(pred_mask_s2_1).to(dtype=torch.float32) # [N, K]
mask_2 = torch.sigmoid(pred_mask_s2_2).to(dtype=torch.float32) # [N, K]
mask_3 = torch.sigmoid(pred_mask_s2_3).to(dtype=torch.float32) # [N, K]
feats_iou = torch.cat(
[feats_seg_global, feats_seg, pred_mask_s2], dim=-1
) # [N, K, 512+3+3+3+512]
feats_iou = self.iou_mlp(feats_iou) # [N, K, 512]
feats_iou = torch.max(feats_iou, dim=0).values # [K, 512]
pred_iou = self.iou_mlp_out(feats_iou) # [K, 3]
pred_iou = torch.sigmoid(pred_iou).to(dtype=torch.float32) # [K, 3]
mask_1 = mask_1.transpose(0, 1) # [K, N]
mask_2 = mask_2.transpose(0, 1) # [K, N]
mask_3 = mask_3.transpose(0, 1) # [K, N]
return mask_1, mask_2, mask_3, pred_iou
def normalize_pc(pc):
"""
pc: (N, 3)
"""
max_, min_ = np.max(pc, axis=0), np.min(pc, axis=0)
center = (max_ + min_) / 2
scale = (max_ - min_) / 2
scale = np.max(np.abs(scale))
pc = (pc - center) / (scale + 1e-10)
return pc
@torch.no_grad()
def get_feat(model, points, normals):
data_dict = {
"coord": points,
"normal": normals,
"color": np.ones_like(points),
"batch": np.zeros(points.shape[0], dtype=np.int64),
}
data_dict = model.transform(data_dict)
for k in data_dict:
if isinstance(data_dict[k], torch.Tensor):
data_dict[k] = data_dict[k].cuda()
point = model.sonata(data_dict)
while "pooling_parent" in point.keys():
assert "pooling_inverse" in point.keys()
parent = point.pop("pooling_parent")
inverse = point.pop("pooling_inverse")
parent.feat = torch.cat([parent.feat, point.feat[inverse]], dim=-1)
point = parent
feat = point.feat # [M, 1232]
feat = model.mlp(feat) # [M, 512]
feat = feat[point.inverse] # [N, 512]
feats = feat
return feats
@torch.no_grad()
def get_mask(model, feats, points, point_prompt, iter=1):
"""
feats: [N, 512]
points: [N, 3]
point_prompt: [K, 3]
"""
point_num = points.shape[0]
prompt_num = point_prompt.shape[0]
feats = feats.unsqueeze(1) # [N, 1, 512]
feats = feats.repeat(1, prompt_num, 1).cuda() # [N, K, 512]
points = torch.from_numpy(points).float().cuda().unsqueeze(1) # [N, 1, 3]
points = points.repeat(1, prompt_num, 1) # [N, K, 3]
prompt_coord = (
torch.from_numpy(point_prompt).float().cuda().unsqueeze(0)
) # [1, K, 3]
prompt_coord = prompt_coord.repeat(point_num, 1, 1) # [N, K, 3]
feats = feats.transpose(0, 1) # [K, N, 512]
points = points.transpose(0, 1) # [K, N, 3]
prompt_coord = prompt_coord.transpose(0, 1) # [K, N, 3]
mask_1, mask_2, mask_3, pred_iou = model(feats, points, prompt_coord, iter)
mask_1 = mask_1.transpose(0, 1) # [N, K]
mask_2 = mask_2.transpose(0, 1) # [N, K]
mask_3 = mask_3.transpose(0, 1) # [N, K]
mask_1 = mask_1.detach().cpu().numpy() > 0.5
mask_2 = mask_2.detach().cpu().numpy() > 0.5
mask_3 = mask_3.detach().cpu().numpy() > 0.5
org_iou = pred_iou.detach().cpu().numpy() # [K, 3]
return mask_1, mask_2, mask_3, org_iou
def cal_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(np.logical_or(m1, m2))
def cal_single_iou(m1, m2):
return np.sum(np.logical_and(m1, m2)) / np.sum(m1)
def iou_3d(box1, box2, signle=None):
"""
计算两个三维边界框的交并比 (IoU)
参数:
box1 (list): 第一个边界框的坐标 [x1_min, y1_min, z1_min, x1_max, y1_max, z1_max]
box2 (list): 第二个边界框的坐标 [x2_min, y2_min, z2_min, x2_max, y2_max, z2_max]
返回:
float: 交并比 (IoU) 值
"""
# 计算交集的坐标
intersection_xmin = max(box1[0], box2[0])
intersection_ymin = max(box1[1], box2[1])
intersection_zmin = max(box1[2], box2[2])
intersection_xmax = min(box1[3], box2[3])
intersection_ymax = min(box1[4], box2[4])
intersection_zmax = min(box1[5], box2[5])
# 判断是否有交集
if (
intersection_xmin >= intersection_xmax
or intersection_ymin >= intersection_ymax
or intersection_zmin >= intersection_zmax
):
return 0.0 # 无交集
# 计算交集的体积
intersection_volume = (
(intersection_xmax - intersection_xmin)
* (intersection_ymax - intersection_ymin)
* (intersection_zmax - intersection_zmin)
)
# 计算两个盒子的体积
box1_volume = (box1[3] - box1[0]) * (box1[4] - box1[1]) * (box1[5] - box1[2])
box2_volume = (box2[3] - box2[0]) * (box2[4] - box2[1]) * (box2[5] - box2[2])
if signle is None:
# 计算并集的体积
union_volume = box1_volume + box2_volume - intersection_volume
elif signle == "1":
union_volume = box1_volume
elif signle == "2":
union_volume = box2_volume
else:
raise ValueError("signle must be None or 1 or 2")
# 计算 IoU
iou = intersection_volume / union_volume if union_volume > 0 else 0.0
return iou
def cal_point_bbox_iou(p1, p2, signle=None):
min_p1 = np.min(p1, axis=0)
max_p1 = np.max(p1, axis=0)
min_p2 = np.min(p2, axis=0)
max_p2 = np.max(p2, axis=0)
box1 = [min_p1[0], min_p1[1], min_p1[2], max_p1[0], max_p1[1], max_p1[2]]
box2 = [min_p2[0], min_p2[1], min_p2[2], max_p2[0], max_p2[1], max_p2[2]]
return iou_3d(box1, box2, signle)
def cal_bbox_iou(points, m1, m2):
p1 = points[m1]
p2 = points[m2]
return cal_point_bbox_iou(p1, p2)
def clean_mesh(mesh):
"""
mesh: trimesh.Trimesh
"""
# 1. 合并接近的顶点
mesh.merge_vertices()
# 2. 删除重复的顶点
# 3. 删除重复的面片
mesh.process(True)
return mesh
def remove_outliers_iqr(data, factor=1.5):
"""
基于 IQR 去除离群值
:param data: 输入的列表或 NumPy 数组
:param factor: IQR 的倍数(默认 1.5)
:return: 去除离群值后的列表
"""
data = np.array(data, dtype=np.float32)
q1 = np.percentile(data, 25) # 第一四分位数
q3 = np.percentile(data, 75) # 第三四分位数
iqr = q3 - q1 # 四分位距
lower_bound = q1 - factor * iqr
upper_bound = q3 + factor * iqr
return data[(data >= lower_bound) & (data <= upper_bound)].tolist()
def better_aabb(points):
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
x = remove_outliers_iqr(x)
y = remove_outliers_iqr(y)
z = remove_outliers_iqr(z)
min_xyz = np.array([np.min(x), np.min(y), np.min(z)])
max_xyz = np.array([np.max(x), np.max(y), np.max(z)])
return [min_xyz, max_xyz]
def fix_label(face_ids, adjacent_faces, use_aabb=False, mesh=None, show_info=False):
if use_aabb:
def _cal_aabb(face_ids, i, _points_org):
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
_part_mask = (
(_points_org[:, 0] >= min_xyz[0])
& (_points_org[:, 0] <= max_xyz[0])
& (_points_org[:, 1] >= min_xyz[1])
& (_points_org[:, 1] <= max_xyz[1])
& (_points_org[:, 2] >= min_xyz[2])
& (_points_org[:, 2] <= max_xyz[2])
)
_part_mask = np.reshape(_part_mask, (-1, 3))
_part_mask = np.all(_part_mask, axis=1)
return i, [min_xyz, max_xyz], _part_mask
with Timer("计算aabb"):
aabb = {}
unique_ids = np.unique(face_ids)
# print(max(unique_ids))
aabb_face_mask = {}
_faces = mesh.faces
_vertices = mesh.vertices
_faces = np.reshape(_faces, (-1))
_points = _vertices[_faces]
with ThreadPoolExecutor(max_workers=20) as executor:
futures = []
for i in unique_ids:
if i < 0:
continue
futures.append(executor.submit(_cal_aabb, face_ids, i, _points))
for future in futures:
res = future.result()
aabb[res[0]] = res[1]
aabb_face_mask[res[0]] = res[2]
# _faces = mesh.faces
# _vertices = mesh.vertices
# _faces = np.reshape(_faces, (-1))
# _points = _vertices[_faces]
# aabb_face_mask = cal_aabb_mask(_points, face_ids)
with Timer("合并mesh"):
loop_cnt = 1
changed = True
progress = tqdm(disable=not show_info)
no_mask_ids = np.where(face_ids < 0)[0].tolist()
faces_max = adjacent_faces.shape[0]
while changed and loop_cnt <= 50:
changed = False
# 获取无色面片
new_no_mask_ids = []
for i in no_mask_ids:
# if face_ids[i] < 0:
# 找邻居
if not (0 <= i < faces_max):
continue
_adj_faces = adjacent_faces[i]
_adj_ids = []
for j in _adj_faces:
if j == -1:
break
if face_ids[j] >= 0:
_tar_id = face_ids[j]
if use_aabb:
_mask = aabb_face_mask[_tar_id]
if _mask[i]:
_adj_ids.append(_tar_id)
else:
_adj_ids.append(_tar_id)
if len(_adj_ids) == 0:
new_no_mask_ids.append(i)
continue
_max_id = np.argmax(np.bincount(_adj_ids))
face_ids[i] = _max_id
changed = True
no_mask_ids = new_no_mask_ids
# print(loop_cnt)
progress.update(1)
# progress.set_description(f"合并mesh循环:{loop_cnt} {np.sum(face_ids < 0)}")
loop_cnt += 1
return face_ids
def save_mesh(save_path, mesh, face_ids, color_map):
face_colors = np.zeros((len(mesh.faces), 3), dtype=np.uint8)
for i in tqdm(range(len(mesh.faces)), disable=True):
_max_id = face_ids[i]
if _max_id == -2:
continue
face_colors[i, :3] = color_map[_max_id]
mesh_save = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
mesh_save.visual.face_colors = face_colors
mesh_save.export(save_path)
mesh_save.export(save_path.replace(".glb", ".ply"))
# print('保存mesh完成')
scene_mesh = trimesh.Scene()
scene_mesh.add_geometry(mesh_save)
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz, max_xyz = better_aabb(_points)
center = (min_xyz + max_xyz) / 2
size = max_xyz - min_xyz
box = trimesh.path.creation.box_outline()
box.vertices *= size
box.vertices += center
box_color = np.array([[color_map[i][0], color_map[i][1], color_map[i][2], 255]])
box_color = np.repeat(box_color, len(box.entities), axis=0).astype(np.uint8)
box.colors = box_color
scene_mesh.add_geometry(box)
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
scene_mesh.export(save_path.replace(".glb", "_aabb.glb"))
aabb = np.array(aabb)
np.save(save_path.replace(".glb", "_aabb.npy"), aabb)
np.save(save_path.replace(".glb", "_face_ids.npy"), face_ids)
def get_aabb_from_face_ids(mesh, face_ids):
unique_ids = np.unique(face_ids)
aabb = []
for i in unique_ids:
if i == -1 or i == -2:
continue
_part_mask = face_ids == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
aabb.append([min_xyz, max_xyz])
return np.array(aabb)
def calculate_face_areas(mesh):
"""
计算每个三角形面片的面积
:param mesh: trimesh.Trimesh 对象
:return: 面片面积数组 (n_faces,)
"""
return mesh.area_faces
# # 提取顶点和面片索引
# vertices = mesh.vertices
# faces = mesh.faces
# # 获取所有三个顶点的坐标
# v0 = vertices[faces[:, 0]]
# v1 = vertices[faces[:, 1]]
# v2 = vertices[faces[:, 2]]
# # 计算两个边向量
# edge1 = v1 - v0
# edge2 = v2 - v0
# # 计算叉积的模长(向量面积的两倍)
# cross_product = np.cross(edge1, edge2)
# areas = 0.5 * np.linalg.norm(cross_product, axis=1)
# return areas
def get_connected_region(face_ids, adjacent_faces, return_face_part_ids=False):
vis = [False] * len(face_ids)
parts = []
face_part_ids = np.ones_like(face_ids) * -1
for i in range(len(face_ids)):
if vis[i]:
continue
_part = []
_queue = [i]
while len(_queue) > 0:
_cur_face = _queue.pop(0)
if vis[_cur_face]:
continue
vis[_cur_face] = True
_part.append(_cur_face)
face_part_ids[_cur_face] = len(parts)
if not (0 <= _cur_face < adjacent_faces.shape[0]):
continue
_cur_face_id = face_ids[_cur_face]
_adj_faces = adjacent_faces[_cur_face]
for j in _adj_faces:
if j == -1:
break
if not vis[j] and face_ids[j] == _cur_face_id:
_queue.append(j)
parts.append(_part)
if return_face_part_ids:
return parts, face_part_ids
else:
return parts
def aabb_distance(box1, box2):
"""
计算两个轴对齐包围盒(AABB)之间的最近距离。
:param box1: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:param box2: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:return: 最近距离(浮点数)
"""
# 解包坐标
min1, max1 = box1
min2, max2 = box2
# 计算各轴上的分离距离
dx = max(0, max2[0] - min1[0], max1[0] - min2[0]) # x轴分离距离
dy = max(0, max2[1] - min1[1], max1[1] - min2[1]) # y轴分离距离
dz = max(0, max2[2] - min1[2], max1[2] - min2[2]) # z轴分离距离
# 如果所有轴都重叠,则距离为0
if dx == 0 and dy == 0 and dz == 0:
return 0.0
# 计算欧几里得距离
return np.sqrt(dx**2 + dy**2 + dz**2)
def aabb_volume(aabb):
"""
计算轴对齐包围盒(AABB)的体积。
:param aabb: 元组 (min_x, min_y, min_z, max_x, max_y, max_z)
:return: 体积(浮点数)
"""
# 解包坐标
min_xyz, max_xyz = aabb
# 计算体积
dx = max_xyz[0] - min_xyz[0]
dy = max_xyz[1] - min_xyz[1]
dz = max_xyz[2] - min_xyz[2]
return dx * dy * dz
def find_neighbor_part(parts, adjacent_faces, parts_aabb=None, parts_ids=None):
face2part = {}
for i, part in enumerate(parts):
for face in part:
face2part[face] = i
neighbor_parts = []
for i, part in enumerate(parts):
neighbor_part = set()
for face in part:
if not (0 <= face < adjacent_faces.shape[0]):
continue
for adj_face in adjacent_faces[face]:
if adj_face == -1:
break
if adj_face not in face2part:
continue
if face2part[adj_face] == i:
continue
if parts_ids is not None and parts_ids[face2part[adj_face]] in [-1, -2]:
continue
neighbor_part.add(face2part[adj_face])
neighbor_part = list(neighbor_part)
if parts_aabb is not None and parts_ids is not None and (parts_ids[i] == -1 or parts_ids[i] == -2) and len(neighbor_part) == 0:
min_dis = np.inf
min_idx = -1
for j, _part in tqdm(enumerate(parts)):
if j == i:
continue
if parts_ids[j] == -1 or parts_ids[j] == -2:
continue
aabb_1 = parts_aabb[i]
aabb_2 = parts_aabb[j]
dis = aabb_distance(aabb_1, aabb_2)
if dis < min_dis:
min_dis = dis
min_idx = j
elif dis == min_dis:
if aabb_volume(parts_aabb[j]) < aabb_volume(parts_aabb[min_idx]):
min_idx = j
neighbor_part = [min_idx]
neighbor_parts.append(neighbor_part)
return neighbor_parts
def do_post_process(face_areas, parts, adjacent_faces, face_ids, threshold=0.95, show_info=False):
# # 获取邻接面片
# mesh_save = mesh.copy()
# face_adjacency = mesh.face_adjacency
# adjacent_faces = {}
# for face1, face2 in face_adjacency:
# if face1 not in adjacent_faces:
# adjacent_faces[face1] = []
# if face2 not in adjacent_faces:
# adjacent_faces[face2] = []
# adjacent_faces[face1].append(face2)
# adjacent_faces[face2].append(face1)
# parts = get_connected_region(face_ids, adjacent_faces)
unique_ids = np.unique(face_ids)
if show_info:
print(f"连通区域数量:{len(parts)}")
print(f"ID数量:{len(unique_ids)}")
# face_areas = calculate_face_areas(mesh)
total_area = np.sum(face_areas)
if show_info:
print(f"总面积:{total_area}")
part_areas = []
for i, part in enumerate(parts):
part_area = np.sum(face_areas[part])
part_areas.append(float(part_area / total_area))
sorted_parts = sorted(zip(part_areas, parts), key=lambda x: x[0], reverse=True)
parts = [x[1] for x in sorted_parts]
part_areas = [x[0] for x in sorted_parts]
integral_part_areas = np.cumsum(part_areas)
neighbor_parts = find_neighbor_part(parts, adjacent_faces)
new_face_ids = face_ids.copy()
for i, part in enumerate(parts):
if integral_part_areas[i] > threshold and part_areas[i] < 0.01:
if len(neighbor_parts[i]) > 0:
max_area = 0
max_part = -1
for j in neighbor_parts[i]:
if integral_part_areas[j] > threshold:
continue
if part_areas[j] > max_area:
max_area = part_areas[j]
max_part = j
if max_part != -1:
if show_info:
print(f"合并mesh:{i} {max_part}")
parts[max_part].extend(part)
parts[i] = []
target_face_id = face_ids[parts[max_part][0]]
for face in part:
new_face_ids[face] = target_face_id
return new_face_ids
def do_no_mask_process(parts, face_ids):
# # 获取邻接面片
# mesh_save = mesh.copy()
# face_adjacency = mesh.face_adjacency
# adjacent_faces = {}
# for face1, face2 in face_adjacency:
# if face1 not in adjacent_faces:
# adjacent_faces[face1] = []
# if face2 not in adjacent_faces:
# adjacent_faces[face2] = []
# adjacent_faces[face1].append(face2)
# adjacent_faces[face2].append(face1)
# parts = get_connected_region(face_ids, adjacent_faces)
unique_ids = np.unique(face_ids)
max_id = np.max(unique_ids)
if -1 or -2 in unique_ids:
new_face_ids = face_ids.copy()
for i, part in enumerate(parts):
if face_ids[part[0]] == -1 or face_ids[part[0]] == -2:
for face in part:
new_face_ids[face] = max_id + 1
max_id += 1
return new_face_ids
else:
return face_ids
def union_aabb(aabb1, aabb2):
min_xyz1 = aabb1[0]
max_xyz1 = aabb1[1]
min_xyz2 = aabb2[0]
max_xyz2 = aabb2[1]
min_xyz = np.minimum(min_xyz1, min_xyz2)
max_xyz = np.maximum(max_xyz1, max_xyz2)
return [min_xyz, max_xyz]
def aabb_increase(aabb1, aabb2):
min_xyz_before = aabb1[0]
max_xyz_before = aabb1[1]
min_xyz_after, max_xyz_after = union_aabb(aabb1, aabb2)
min_xyz_increase = np.abs(min_xyz_after - min_xyz_before) / np.abs(min_xyz_before)
max_xyz_increase = np.abs(max_xyz_after - max_xyz_before) / np.abs(max_xyz_before)
return min_xyz_increase, max_xyz_increase
def sort_multi_list(multi_list, key=lambda x: x[0], reverse=False):
'''
multi_list: [list1, list2, list3, list4, ...], len(list1)=N, len(list2)=N, len(list3)=N, ...
key: 排序函数,默认按第一个元素排序
reverse: 排序顺序,默认降序
return:
[list1, list2, list3, list4, ...]: 按同一个顺序排序后的多个list
'''
sorted_list = sorted(zip(*multi_list), key=key, reverse=reverse)
return zip(*sorted_list)
class Timer:
STATE = True
def __init__(self, name):
self.name = name
def __enter__(self):
if not Timer.STATE:
return
self.start_time = time.time()
return self # 可以返回 self 以便在 with 块内访问
def __exit__(self, exc_type, exc_val, exc_tb):
if not Timer.STATE:
return
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
print(f">>>>>>代码{self.name} 运行时间: {self.elapsed_time:.4f} 秒")
###################### NUMBA 加速 ######################
@njit
def build_adjacent_faces_numba(face_adjacency):
"""
使用 Numba 加速构建邻接面片数组。
:param face_adjacency: (N, 2) numpy 数组,包含邻接面片对。
:return:
- adj_list: 一维数组,存储所有邻接面片。
- offsets: 一维数组,记录每个面片的邻接起始位置。
"""
n_faces = np.max(face_adjacency) + 1 # 总面片数
n_edges = face_adjacency.shape[0] # 总邻接边数
# 第一步:统计每个面片的邻接数量(度数)
degrees = np.zeros(n_faces, dtype=np.int32)
for i in range(n_edges):
f1, f2 = face_adjacency[i]
degrees[f1] += 1
degrees[f2] += 1
max_degree = np.max(degrees) # 最大度数
adjacent_faces = np.ones((n_faces, max_degree), dtype=np.int32) * -1 # 邻接面片数组
adjacent_faces_count = np.zeros(n_faces, dtype=np.int32) # 邻接面片计数器
for i in range(n_edges):
f1, f2 = face_adjacency[i]
adjacent_faces[f1, adjacent_faces_count[f1]] = f2
adjacent_faces_count[f1] += 1
adjacent_faces[f2, adjacent_faces_count[f2]] = f1
adjacent_faces_count[f2] += 1
return adjacent_faces
###################### NUMBA 加速 ######################
def mesh_sam(
model,
mesh,
save_path,
point_num=100000,
prompt_num=400,
save_mid_res=False,
show_info=False,
post_process=False,
threshold=0.95,
clean_mesh_flag=True,
seed=42,
prompt_bs=32,
):
with Timer("加载mesh"):
model, model_parallel = model
if clean_mesh_flag:
mesh = clean_mesh(mesh)
mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces)
if show_info:
print(f"点数:{mesh.vertices.shape[0]} 面片数:{mesh.faces.shape[0]}")
point_num = 100000
prompt_num = 400
with Timer("获取邻接面片"):
face_adjacency = mesh.face_adjacency
with Timer("处理邻接面片"):
adjacent_faces = build_adjacent_faces_numba(face_adjacency)
with Timer("采样点云"):
_points, face_idx = trimesh.sample.sample_surface(mesh, point_num, seed=seed)
_points_org = _points.copy()
_points = normalize_pc(_points)
normals = mesh.face_normals[face_idx]
if show_info:
print(f"点数:{point_num} 面片数:{mesh.faces.shape[0]}")
with Timer("获取特征"):
_feats = get_feat(model, _points, normals)
if show_info:
print("预处理特征")
if save_mid_res:
feat_save = _feats.float().detach().cpu().numpy()
data_scaled = feat_save / np.linalg.norm(feat_save, axis=-1, keepdims=True)
pca = PCA(n_components=3)
data_reduced = pca.fit_transform(data_scaled)
data_reduced = (data_reduced - data_reduced.min()) / (
data_reduced.max() - data_reduced.min()
)
_colors_pca = (data_reduced * 255).astype(np.uint8)
pc_save = trimesh.points.PointCloud(_points, colors=_colors_pca)
pc_save.export(os.path.join(save_path, "point_pca.glb"))
pc_save.export(os.path.join(save_path, "point_pca.ply"))
if show_info:
print("PCA获取特征颜色")
with Timer("FPS采样提示点"):
fps_idx = fpsample.fps_sampling(_points, prompt_num)
_point_prompts = _points[fps_idx]
if save_mid_res:
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.glb")
)
trimesh.points.PointCloud(_point_prompts, colors=_colors_pca[fps_idx]).export(
os.path.join(save_path, "point_prompts_pca.ply")
)
if show_info:
print("采样完成")
with Timer("推理"):
bs = prompt_bs
step_num = prompt_num // bs + 1
mask_res = []
iou_res = []
for i in tqdm(range(step_num), disable=not show_info):
cur_propmt = _point_prompts[bs * i : bs * (i + 1)]
pred_mask_1, pred_mask_2, pred_mask_3, pred_iou = get_mask(
model_parallel, _feats, _points, cur_propmt
)
pred_mask = np.stack(
[pred_mask_1, pred_mask_2, pred_mask_3], axis=-1
) # [N, K, 3]
max_idx = np.argmax(pred_iou, axis=-1) # [K]
for j in range(max_idx.shape[0]):
mask_res.append(pred_mask[:, j, max_idx[j]])
iou_res.append(pred_iou[j, max_idx[j]])
mask_res = np.stack(mask_res, axis=-1) # [N, K]
if show_info:
print("prmopt 推理完成")
with Timer("根据IOU排序"):
iou_res = np.array(iou_res).tolist()
mask_iou = [[mask_res[:, i], iou_res[i]] for i in range(prompt_num)]
mask_iou_sorted = sorted(mask_iou, key=lambda x: x[1], reverse=True)
mask_sorted = [mask_iou_sorted[i][0] for i in range(prompt_num)]
iou_sorted = [mask_iou_sorted[i][1] for i in range(prompt_num)]
with Timer("NMS"):
clusters = defaultdict(list)
with ThreadPoolExecutor(max_workers=20) as executor:
for i in tqdm(range(prompt_num), desc="NMS", disable=not show_info):
_mask = mask_sorted[i]
futures = []
for j in clusters.keys():
futures.append(executor.submit(cal_iou, _mask, mask_sorted[j]))
for j, future in zip(clusters.keys(), futures):
if future.result() > 0.9:
clusters[j].append(i)
break
else:
clusters[i].append(i)
if show_info:
print(f"NMS完成,mask数量:{len(clusters)}")
if save_mid_res:
part_mask_save_path = os.path.join(save_path, "part_mask")
if os.path.exists(part_mask_save_path):
shutil.rmtree(part_mask_save_path)
os.makedirs(part_mask_save_path, exist_ok=True)
for i in tqdm(clusters.keys(), desc="保存mask", disable=not show_info):
cluster_num = len(clusters[i])
cluster_iou = iou_sorted[i]
cluster_area = np.sum(mask_sorted[i])
if cluster_num <= 2:
continue
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
# 过滤只有一个mask的cluster
with Timer("过滤只有一个mask的cluster"):
filtered_clusters = []
other_clusters = []
for i in clusters.keys():
if len(clusters[i]) > 2:
filtered_clusters.append(i)
else:
other_clusters.append(i)
if show_info:
print(
f"过滤前:{len(clusters)} 个cluster,"
f"过滤后:{len(filtered_clusters)} 个cluster"
)
# 再次合并
with Timer("再次合并"):
filtered_clusters_num = len(filtered_clusters)
cluster2 = {}
is_union = [False] * filtered_clusters_num
for i in range(filtered_clusters_num):
if is_union[i]:
continue
cur_cluster = filtered_clusters[i]
cluster2[cur_cluster] = [cur_cluster]
for j in range(i + 1, filtered_clusters_num):
if is_union[j]:
continue
tar_cluster = filtered_clusters[j]
if (
cal_bbox_iou(
_points, mask_sorted[tar_cluster], mask_sorted[cur_cluster]
)
> 0.5
):
cluster2[cur_cluster].append(tar_cluster)
is_union[j] = True
if show_info:
print(f"再次合并,合并数量:{len(cluster2.keys())}")
with Timer("计算没有mask的点"):
no_mask = np.ones(point_num)
for i in cluster2:
part_mask = mask_sorted[i]
no_mask[part_mask] = 0
if show_info:
print(
f"{np.sum(no_mask == 1)} 个点没有mask,"
f" 占比:{np.sum(no_mask == 1) / point_num:.4f}"
)
with Timer("修补遗漏mask"):
# 查询漏掉的mask
for i in tqdm(range(len(mask_sorted)), desc="漏掉mask", disable=not show_info):
if i in cluster2:
continue
part_mask = mask_sorted[i]
_iou = cal_single_iou(part_mask, no_mask)
if _iou > 0.7:
cluster2[i] = [i]
no_mask[part_mask] = 0
if save_mid_res:
mask_save = mask_sorted[i]
mask_save = np.expand_dims(mask_save, axis=-1)
mask_save = np.repeat(mask_save, 3, axis=-1)
mask_save = (mask_save * 255).astype(np.uint8)
point_save = trimesh.points.PointCloud(_points, colors=mask_save)
cluster_iou = iou_sorted[i]
cluster_area = int(np.sum(mask_sorted[i]))
cluster_num = 1
point_save.export(
os.path.join(
part_mask_save_path,
f"mask_{i}_iou_{cluster_iou:.5f}_area_{cluster_area:.5f}_num_{cluster_num}.glb",
)
)
if show_info:
print(f"修补遗漏mask:{len(cluster2.keys())}")
with Timer("计算点云最终mask"):
final_mask = list(cluster2.keys())
final_mask_area = [int(np.sum(mask_sorted[i])) for i in final_mask]
final_mask_area = [
[final_mask[i], final_mask_area[i]] for i in range(len(final_mask))
]
final_mask_area_sorted = sorted(final_mask_area, key=lambda x: x[1], reverse=True)
final_mask_sorted = [
final_mask_area_sorted[i][0] for i in range(len(final_mask_area))
]
final_mask_area_sorted = [
final_mask_area_sorted[i][1] for i in range(len(final_mask_area))
]
if show_info:
print(f"最终mask数量:{len(final_mask_sorted)}")
with Timer("点云上色"):
# 生成color map
color_map = {}
for i in final_mask_sorted:
part_color = np.random.rand(3) * 255
color_map[i] = part_color
# print(color_map)
result_mask = -np.ones(point_num, dtype=np.int64)
for i in final_mask_sorted:
part_mask = mask_sorted[i]
result_mask[part_mask] = i
if save_mid_res:
# 保存点云结果
result_colors = np.zeros_like(_colors_pca)
for i in final_mask_sorted:
part_color = color_map[i]
part_mask = mask_sorted[i]
result_colors[part_mask, :3] = part_color
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.glb")
)
trimesh.points.PointCloud(_points, colors=result_colors).export(
os.path.join(save_path, "auto_mask_cluster.ply")
)
if show_info:
print("保存点云完成")
with Timer("投影Mesh并统计label"):
# 保存mesh结果
face_seg_res = {}
for i in final_mask_sorted:
_part_mask = result_mask == i
_face_idx = face_idx[_part_mask]
for k in _face_idx:
if k not in face_seg_res:
face_seg_res[k] = []
face_seg_res[k].append(i)
_part_mask = result_mask == -1
_face_idx = face_idx[_part_mask]
for k in _face_idx:
if k not in face_seg_res:
face_seg_res[k] = []
face_seg_res[k].append(-1)
face_ids = -np.ones(len(mesh.faces), dtype=np.int64) * 2
for i in tqdm(face_seg_res, leave=False, disable=True):
_seg_ids = np.array(face_seg_res[i])
# 获取最多的seg_id
_max_id = np.argmax(np.bincount(_seg_ids + 2)) - 2
face_ids[i] = _max_id
face_ids_org = face_ids.copy()
if show_info:
print("生成face_ids完成")
with Timer("第一次修复face_ids"):
face_ids += 1
face_ids = fix_label(face_ids, adjacent_faces, mesh=mesh, show_info=show_info)
face_ids -= 1
if show_info:
print("修复face_ids完成")
color_map[-1] = np.array([255, 0, 0], dtype=np.uint8)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh.glb"), mesh, face_ids, color_map
)
save_mesh(
os.path.join(save_path, "auto_mask_mesh_org.glb"),
mesh,
face_ids_org,
color_map,
)
if show_info:
print("保存mesh结果完成")
with Timer("计算连通区域"):
face_areas = calculate_face_areas(mesh)
mesh_total_area = np.sum(face_areas)
parts = get_connected_region(face_ids, adjacent_faces)
connected_parts, _face_connected_parts_ids = get_connected_region(np.ones_like(face_ids), adjacent_faces, return_face_part_ids=True)
if show_info:
print(f"共{len(parts)}个mesh")
with Timer("排序连通区域"):
parts_cp_idx = []
for x in parts:
_face_idx = x[0]
parts_cp_idx.append(_face_connected_parts_ids[_face_idx])
parts_cp_idx = np.array(parts_cp_idx)
parts_areas = [float(np.sum(face_areas[x])) for x in parts]
connected_parts_areas = [float(np.sum(face_areas[x])) for x in connected_parts]
parts_cp_areas = [connected_parts_areas[x] for x in parts_cp_idx]
parts_sorted, parts_areas_sorted, parts_cp_areas_sorted = sort_multi_list([parts, parts_areas, parts_cp_areas], key=lambda x: x[1], reverse=True)
with Timer("去除面积过小的区域"):
filtered_parts = []
other_parts = []
for i in range(len(parts_sorted)):
parts = parts_sorted[i]
area = parts_areas_sorted[i]
cp_area = parts_cp_areas_sorted[i]
if area / (cp_area+1e-7) > 0.001:
filtered_parts.append(i)
else:
other_parts.append(i)
if show_info:
print(f"保留{len(filtered_parts)}个mesh, 其他{len(other_parts)}个mesh")
with Timer("去除面积过小区域的label"):
face_ids_2 = face_ids.copy()
part_num = len(cluster2.keys())
for j in other_parts:
parts = parts_sorted[j]
for i in parts:
face_ids_2[i] = -1
with Timer("第二次修复face_ids"):
face_ids_3 = face_ids_2.copy()
face_ids_3 = fix_label(face_ids_3, adjacent_faces, mesh=mesh, show_info=show_info)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_filtered_2.glb"),
mesh,
face_ids_3,
color_map,
)
if show_info:
print("保存mesh结果完成")
with Timer("第二次计算连通区域"):
parts_2 = get_connected_region(face_ids_3, adjacent_faces)
parts_areas_2 = [float(np.sum(face_areas[x])) for x in parts_2]
parts_ids_2 = [face_ids_3[x[0]] for x in parts_2]
with Timer("添加过大的缺失part"):
color_map_2 = copy.deepcopy(color_map)
max_id = np.max(parts_ids_2)
for i in range(len(parts_2)):
_parts = parts_2[i]
_area = parts_areas_2[i]
_parts_id = face_ids_3[_parts[0]]
if _area / mesh_total_area > 0.001:
if _parts_id == -1 or _parts_id == -2:
parts_ids_2[i] = max_id + 1
max_id += 1
color_map_2[max_id] = np.random.rand(3) * 255
if show_info:
print(f"新增part {max_id}")
# else:
# parts_ids_2[i] = -1
with Timer("赋值新的face_ids"):
face_ids_4 = face_ids_3.copy()
for i in range(len(parts_2)):
_parts = parts_2[i]
_parts_id = parts_ids_2[i]
for j in _parts:
face_ids_4[j] = _parts_id
with Timer("计算part和label的aabb"):
ids_aabb = {}
unique_ids = np.unique(face_ids_4)
for i in unique_ids:
if i < 0:
continue
_part_mask = face_ids_4 == i
_faces = mesh.faces[_part_mask]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
ids_aabb[i] = [min_xyz, max_xyz]
parts_2_aabb = []
for i in range(len(parts_2)):
_parts = parts_2[i]
_faces = mesh.faces[_parts]
_faces = np.reshape(_faces, (-1))
_points = mesh.vertices[_faces]
min_xyz = np.min(_points, axis=0)
max_xyz = np.max(_points, axis=0)
parts_2_aabb.append([min_xyz, max_xyz])
with Timer("计算part的邻居"):
parts_2_neighbor = find_neighbor_part(parts_2, adjacent_faces, parts_2_aabb, parts_ids_2)
with Timer("合并无mask区域"):
for i in range(len(parts_2)):
_parts = parts_2[i]
_ids = parts_ids_2[i]
if _ids == -1 or _ids == -2:
_cur_aabb = parts_2_aabb[i]
_min_aabb_increase = 1e10
_min_id = -1
for j in parts_2_neighbor[i]:
if parts_ids_2[j] == -1 or parts_ids_2[j] == -2:
continue
_tar_id = parts_ids_2[j]
_tar_aabb = ids_aabb[_tar_id]
_min_increase, _max_increase = aabb_increase(_tar_aabb, _cur_aabb)
_increase = max(np.max(_min_increase), np.max(_max_increase))
if _min_aabb_increase > _increase:
_min_aabb_increase = _increase
_min_id = _tar_id
if _min_id >= 0:
parts_ids_2[i] = _min_id
with Timer("再次赋值新的face_ids"):
face_ids_4 = face_ids_3.copy()
for i in range(len(parts_2)):
_parts = parts_2[i]
_parts_id = parts_ids_2[i]
for j in _parts:
face_ids_4[j] = _parts_id
final_face_ids = face_ids_4
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final.glb"),
mesh,
face_ids_4,
color_map_2,
)
if post_process:
parts = get_connected_region(final_face_ids, adjacent_faces)
final_face_ids = do_no_mask_process(parts, final_face_ids)
face_ids_5 = do_post_process(face_areas, parts, adjacent_faces, face_ids_4, threshold, show_info=show_info)
if save_mid_res:
save_mesh(
os.path.join(save_path, "auto_mask_mesh_final_post.glb"),
mesh,
face_ids_5,
color_map_2,
)
final_face_ids = face_ids_5
with Timer("计算最后的aabb"):
aabb = get_aabb_from_face_ids(mesh, final_face_ids)
return aabb, final_face_ids, mesh
class AutoMask:
def __init__(
self,
ckpt_path=None,
point_num=100000,
prompt_num=400,
threshold=0.95,
post_process=True,
):
"""
ckpt_path: str, 模型路径
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
"""
self.model = P3SAM()
self.model.load_state_dict(ckpt_path)
self.model.eval()
self.model_parallel = torch.nn.DataParallel(self.model)
self.model.cuda()
self.model_parallel.cuda()
self.point_num = point_num
self.prompt_num = prompt_num
self.threshold = threshold
self.post_process = post_process
def predict_aabb(
self, mesh, point_num=None, prompt_num=None, threshold=None, post_process=None, save_path=None, save_mid_res=False, show_info=True, clean_mesh_flag=True, seed=42, is_parallel=True, prompt_bs=32
):
"""
Parameters:
mesh: trimesh.Trimesh, 输入网格
point_num: int, 采样点数量
prompt_num: int, 提示数量
threshold: float, 阈值
post_process: bool, 是否后处理
Returns:
aabb: np.ndarray, 包围盒
face_ids: np.ndarray, 面id
"""
point_num = point_num if point_num is not None else self.point_num
prompt_num = prompt_num if prompt_num is not None else self.prompt_num
threshold = threshold if threshold is not None else self.threshold
post_process = post_process if post_process is not None else self.post_process
return mesh_sam(
[self.model, self.model_parallel if is_parallel else self.model],
mesh,
save_path=save_path,
point_num=point_num,
prompt_num=prompt_num,
threshold=threshold,
post_process=post_process,
show_info=show_info,
save_mid_res=save_mid_res,
clean_mesh_flag=clean_mesh_flag,
seed=seed,
prompt_bs=prompt_bs,
)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--ckpt_path', type=str, default=None, help='模型路径')
argparser.add_argument('--mesh_path', type=str, default='assets/1.glb', help='输入网格路径')
argparser.add_argument('--output_path', type=str, default='results/1', help='保存路径')
argparser.add_argument('--point_num', type=int, default=100000, help='采样点数量')
argparser.add_argument('--prompt_num', type=int, default=400, help='提示数量')
argparser.add_argument('--threshold', type=float, default=0.95, help='阈值')
argparser.add_argument('--post_process', type=int, default=0, help='是否后处理')
argparser.add_argument('--save_mid_res', type=int, default=1, help='是否保存中间结果')
argparser.add_argument('--show_info', type=int, default=1, help='是否显示信息')
argparser.add_argument('--show_time_info', type=int, default=1, help='是否显示时间信息')
argparser.add_argument('--seed', type=int, default=42, help='随机种子')
argparser.add_argument('--parallel', type=int, default=1, help='是否使用多卡')
argparser.add_argument('--prompt_bs', type=int, default=32, help='提示点推理时的batch size大小')
argparser.add_argument('--clean_mesh', type=int, default=1, help='是否清洗网格')
args = argparser.parse_args()
Timer.STATE = args.show_time_info
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
ckpt_path = args.ckpt_path
auto_mask = AutoMask(ckpt_path)
mesh_path = args.mesh_path
if os.path.isdir(mesh_path):
for file in os.listdir(mesh_path):
if not (file.endswith('.glb') or file.endswith('.obj') or file.endswith('.ply')):
continue
_mesh_path = os.path.join(mesh_path, file)
_output_path = os.path.join(output_path, file[:-4])
os.makedirs(_output_path, exist_ok=True)
mesh = trimesh.load(_mesh_path, force='mesh')
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(mesh,
save_path=_output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,)
else:
mesh = trimesh.load(mesh_path, force='mesh')
set_seed(args.seed)
aabb, face_ids, mesh = auto_mask.predict_aabb(mesh,
save_path=output_path,
point_num=args.point_num,
prompt_num=args.prompt_num,
threshold=args.threshold,
post_process=args.post_process,
save_mid_res=args.save_mid_res,
show_info=args.show_info,
seed=args.seed,
is_parallel=args.parallel,
clean_mesh_flag=args.clean_mesh,)
###############################################
## 可以通过以下代码保存返回的结果
## You can save the returned result by the following code
################# save result #################
# color_map = {}
# unique_ids = np.unique(face_ids)
# for i in unique_ids:
# if i == -1:
# continue
# part_color = np.random.rand(3) * 255
# color_map[i] = part_color
# face_colors = []
# for i in face_ids:
# if i == -1:
# face_colors.append([0, 0, 0])
# else:
# face_colors.append(color_map[i])
# face_colors = np.array(face_colors).astype(np.uint8)
# mesh_save = mesh.copy()
# mesh_save.visual.face_colors = face_colors
# mesh_save.export(os.path.join(output_path, 'auto_mask_mesh.glb'))
# scene_mesh = trimesh.Scene()
# scene_mesh.add_geometry(mesh_save)
# for i in range(len(aabb)):
# min_xyz, max_xyz = aabb[i]
# center = (min_xyz + max_xyz) / 2
# size = max_xyz - min_xyz
# box = trimesh.path.creation.box_outline()
# box.vertices *= size
# box.vertices += center
# scene_mesh.add_geometry(box)
# scene_mesh.export(os.path.join(output_path, 'auto_mask_aabb.glb'))
################# save result #################
'''
python auto_mask.py --parallel 0
python auto_mask.py --ckpt_path ../weights/last.ckpt --mesh_path assets/1.glb --output_path results/1 --parallel 0
python auto_mask.py --ckpt_path ../weights/last.ckpt --mesh_path assets --output_path results/all
'''