Spaces:
Runtime error
Runtime error
| import math | |
| import gradio as gr | |
| from transformers import AutoConfig, AutoModelForCausalLM | |
| from accelerate import init_empty_weights | |
| def recommend_gpu_mem_util( | |
| model_config_url, | |
| batch_size, | |
| max_prompt_length, | |
| max_completion_length, | |
| tp_size, | |
| gpu_memory=79, | |
| precision_in_bytes=2, | |
| kv_multiplier=2 | |
| ): | |
| # Load model config from HF URL | |
| try: | |
| config = AutoConfig.from_pretrained(model_config_url) | |
| except Exception as e: | |
| msg = f"Failed to load model config from URL: {e}" | |
| return msg, {"Error": msg} | |
| # Extract model config params | |
| try: | |
| num_hidden_layers = getattr(config, "num_hidden_layers") | |
| hidden_size = getattr(config, "hidden_size") | |
| num_attention_heads = getattr(config, "num_attention_heads") | |
| num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads) | |
| except Exception as e: | |
| msg = f"Required field missing in model config: {e}" | |
| return msg, {"Error": msg} | |
| # Estimate model no. parameters | |
| try: | |
| with init_empty_weights(): | |
| model = AutoModelForCausalLM.from_config(config) | |
| num_params = sum(p.numel() for p in model.parameters()) | |
| model_params = num_params / 1e9 | |
| est_msg = f"Estimated model_params from config: {model_params:.2f}B" | |
| except Exception as e: | |
| msg = f"Failed to estimate model parameters: {e}" | |
| return msg, {"Error": msg} | |
| # Calculate all memory and utilization values | |
| try: | |
| seq_len = max_prompt_length + max_completion_length | |
| model_size = float(model_params) * 1024**3 * precision_in_bytes / tp_size | |
| # KV_cache_per_token = kv_multiplier (K and V) * num_hidden_layers * (num_key_value_heads * hidden_size / num_attention_heads) * precision_in_bytes | |
| kv_cache_per_token = ( | |
| kv_multiplier | |
| * num_hidden_layers | |
| * (num_key_value_heads * hidden_size / num_attention_heads) | |
| * precision_in_bytes | |
| ) | |
| # KV_cache_total = KV_cache_per_token * Batch_size * Seq_len (max_prompt_length + max_completion_length) | |
| kv_cache_total = kv_cache_per_token * batch_size * seq_len | |
| # Buffer = (Model + KV_cache) * 0.2 # generous 20% buffer | |
| buffer_size = 0.2 * (model_size + kv_cache_total) | |
| # Total = Model + KV_cache + Buffer | |
| total_required = model_size + kv_cache_total + buffer_size | |
| # GPU utilization = Total_reqd / Total_gpu | |
| gpu_memory_bytes = float(gpu_memory) * 1024**3 | |
| gpu_utilization_ratio = total_required / gpu_memory_bytes | |
| # Round up to nearest 0.05 - this generous estimate works much better than actual prediction! | |
| rounded_utilization = math.ceil(gpu_utilization_ratio * 20) / 20 + 0.05 | |
| main_result = f"vllm_gpu_memory_utilization = {rounded_utilization:.2f}" | |
| ans = { | |
| "KV_cache_per_token_MB": kv_cache_per_token / 1024**2, | |
| "KV_cache_total_GB": kv_cache_total / 1024**3, | |
| "Model_size_GB": model_size / 1024**3, | |
| "Buffer_GB": buffer_size / 1024**3, | |
| "Total_required_GB": total_required / 1024**3, | |
| "GPU_mem_util": gpu_utilization_ratio, | |
| "GPU_mem_util_recommended": rounded_utilization, | |
| "model_params": est_msg, | |
| "num_hidden_layers": num_hidden_layers, | |
| "hidden_size": hidden_size, | |
| "num_attention_heads": num_attention_heads, | |
| "num_key_value_heads": num_key_value_heads, | |
| } | |
| return main_result, ans | |
| except Exception as e: | |
| msg = f"Error during calculation: {e}" | |
| return msg, {"Error": msg} | |
| iface = gr.Interface( | |
| fn=recommend_gpu_mem_util, | |
| inputs=[ | |
| gr.Textbox(label="Model Config URL (HuggingFace)", value="https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/resolve/main/config.json"), | |
| gr.Number(label="per_device_train_batch_size", value=4), | |
| gr.Number(label="max_prompt_length", value=512), | |
| gr.Number(label="max_completion_length", value=512), | |
| gr.Number(label="vllm_tensor_parallel_size (tp_size)", value=1), | |
| gr.Number(label="GPU Memory (GB)", value=79), | |
| gr.Number(label="Precision in Bytes (e.g., 2)", value=2), | |
| gr.Number(label="KV Multiplier", value=2), | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Recommended vLLM GPU Memory Utilization"), | |
| gr.JSON(label="Calculation Details"), | |
| ], | |
| title="vLLM GRPO GPU Memory Utilization Estimator", | |
| description = """ | |
| Paste your HuggingFace model config URL (ending in config.json), and enter experiment details. | |
| Model parameters are automatically extracted and estimated from the config. | |
| Note: This is a general recommendation and may not be optimal for your specific environment. | |
| Always verify your actual training GPU requirements. For example, if you're using DeepSpeed, consider utilizing their memory estimation tool: | |
| https://deepspeed.readthedocs.io/en/latest/memory.html | |
| If you encounter "not enough memory" errors, try increasing the GPU memory utilization setting. | |
| If you experience out-of-memory (OOM) errors, lower the utilization value and/or reduce your batch size. | |
| """, | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |