Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,26 @@ import PyPDF2
|
|
| 6 |
import docx
|
| 7 |
import io
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
st.set_page_config(layout="wide")
|
| 10 |
|
| 11 |
# Function to read text from uploaded file
|
|
@@ -22,12 +42,6 @@ def read_file(file):
|
|
| 22 |
st.error("Unsupported file type")
|
| 23 |
return None
|
| 24 |
|
| 25 |
-
# Function to generate text chunks
|
| 26 |
-
def chunk_text(text, max_length=128):
|
| 27 |
-
words = text.split()
|
| 28 |
-
for i in range(0, len(words), max_length):
|
| 29 |
-
yield " ".join(words[i:i + max_length])
|
| 30 |
-
|
| 31 |
st.title("Turkish NER Models Testing")
|
| 32 |
|
| 33 |
model_list = [
|
|
@@ -44,9 +58,7 @@ st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
|
| 44 |
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
|
| 45 |
|
| 46 |
# Determine aggregation strategy
|
| 47 |
-
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner",
|
| 48 |
-
"xlm-roberta-large-finetuned-conll03-english",
|
| 49 |
-
"asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
|
| 50 |
|
| 51 |
st.subheader("Select Text Input Method")
|
| 52 |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
|
|
@@ -86,23 +98,37 @@ Run_Button = st.button("Run")
|
|
| 86 |
if Run_Button and input_text:
|
| 87 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
output = ner_pipeline(chunk)
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
df = pd.DataFrame.from_dict(output_comb)
|
| 96 |
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 97 |
df_final = df[cols_to_keep]
|
| 98 |
|
| 99 |
st.subheader("Recognized Entities")
|
| 100 |
st.dataframe(df_final)
|
| 101 |
-
|
| 102 |
# Spacy display logic
|
| 103 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 104 |
for entity in output_comb:
|
| 105 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 106 |
-
|
| 107 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 108 |
st.write(html, unsafe_allow_html=True)
|
|
|
|
| 6 |
import docx
|
| 7 |
import io
|
| 8 |
|
| 9 |
+
def chunk_text(text, chunk_size=128):
|
| 10 |
+
words = text.split()
|
| 11 |
+
chunks = []
|
| 12 |
+
current_chunk = []
|
| 13 |
+
current_length = 0
|
| 14 |
+
|
| 15 |
+
for word in words:
|
| 16 |
+
if current_length + len(word) + 1 > chunk_size:
|
| 17 |
+
chunks.append(' '.join(current_chunk))
|
| 18 |
+
current_chunk = [word]
|
| 19 |
+
current_length = len(word)
|
| 20 |
+
else:
|
| 21 |
+
current_chunk.append(word)
|
| 22 |
+
current_length += len(word) + 1
|
| 23 |
+
|
| 24 |
+
if current_chunk:
|
| 25 |
+
chunks.append(' '.join(current_chunk))
|
| 26 |
+
|
| 27 |
+
return chunks
|
| 28 |
+
|
| 29 |
st.set_page_config(layout="wide")
|
| 30 |
|
| 31 |
# Function to read text from uploaded file
|
|
|
|
| 42 |
st.error("Unsupported file type")
|
| 43 |
return None
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
st.title("Turkish NER Models Testing")
|
| 46 |
|
| 47 |
model_list = [
|
|
|
|
| 58 |
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
|
| 59 |
|
| 60 |
# Determine aggregation strategy
|
| 61 |
+
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
|
|
|
|
|
|
|
| 62 |
|
| 63 |
st.subheader("Select Text Input Method")
|
| 64 |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
|
|
|
|
| 98 |
if Run_Button and input_text:
|
| 99 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
| 100 |
|
| 101 |
+
# Chunk the input text
|
| 102 |
+
chunks = chunk_text(input_text)
|
| 103 |
+
|
| 104 |
+
# Process each chunk
|
| 105 |
+
all_outputs = []
|
| 106 |
+
for i, chunk in enumerate(chunks):
|
| 107 |
output = ner_pipeline(chunk)
|
| 108 |
+
|
| 109 |
+
# Adjust start and end positions for entities in chunks after the first
|
| 110 |
+
if i > 0:
|
| 111 |
+
offset = len(' '.join(chunks[:i])) + 1
|
| 112 |
+
for entity in output:
|
| 113 |
+
entity['start'] += offset
|
| 114 |
+
entity['end'] += offset
|
| 115 |
+
|
| 116 |
+
all_outputs.extend(output)
|
| 117 |
+
|
| 118 |
+
# Combine entities
|
| 119 |
+
output_comb = entity_comb(all_outputs)
|
| 120 |
+
|
| 121 |
df = pd.DataFrame.from_dict(output_comb)
|
| 122 |
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 123 |
df_final = df[cols_to_keep]
|
| 124 |
|
| 125 |
st.subheader("Recognized Entities")
|
| 126 |
st.dataframe(df_final)
|
| 127 |
+
|
| 128 |
# Spacy display logic
|
| 129 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 130 |
for entity in output_comb:
|
| 131 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 132 |
+
|
| 133 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 134 |
st.write(html, unsafe_allow_html=True)
|