Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from torchvision.datasets import CIFAR100 | |
| from PIL import Image | |
| import random | |
| import numpy as np | |
| from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution | |
| Image.warnings.simplefilter('ignore', Image.DecompressionBombWarning) | |
| try: | |
| sr_processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x4-64") | |
| sr_model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x4-64") | |
| sr_model.eval() | |
| except Exception as e: | |
| sr_model = None | |
| try: | |
| classifier_model = torch.hub.load("chenyaofo/pytorch-cifar-models", "cifar100_resnet56", pretrained=True) | |
| classifier_model.eval() | |
| except Exception as e: | |
| classifier_model = None | |
| cifar100_dataset = CIFAR100(root="./cifar100_data", train=False, download=True) | |
| cifar100_labels = cifar100_dataset.classes | |
| def upscale_image(low_res_pil_image): | |
| if sr_model is None or low_res_pil_image is None: | |
| return low_res_pil_image.resize((400, 400), Image.Resampling.NEAREST) | |
| with torch.no_grad(): | |
| inputs = sr_processor(low_res_pil_image, return_tensors="pt") | |
| outputs = sr_model(**inputs) | |
| output_tensor = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1) | |
| output_numpy = np.moveaxis(output_tensor.numpy(), 0, -1) | |
| output_image = (output_numpy * 255.0).round().astype(np.uint8) | |
| return Image.fromarray(output_image) | |
| def predict_ai(low_res_pil_image): | |
| try: | |
| from torchvision import transforms | |
| preprocess_for_classifier = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize( | |
| mean=[0.5071, 0.4867, 0.4408], | |
| std=[0.2675, 0.2565, 0.2761] | |
| ), | |
| ]) | |
| img_t = preprocess_for_classifier(low_res_pil_image.convert("RGB")) | |
| batch_t = torch.unsqueeze(img_t, 0) | |
| with torch.no_grad(): | |
| out = classifier_model(batch_t) | |
| _, index = torch.max(out, 1) | |
| return cifar100_labels[index[0]] | |
| except Exception as e: | |
| return "Error" | |
| def generate_category_markdown(): | |
| md = "|||||\n|:---|:---|:---|:---|\n" | |
| for i in range(0, 100, 4): | |
| row = cifar100_labels[i:i+4] | |
| md += "| " + " | ".join(row) + " |\n" | |
| return md | |
| def battle(user_guess, state): | |
| user_score = state["user_score"] | |
| ai_score = state["ai_score"] | |
| current_image_idx = state["current_image_idx"] | |
| played_indices = state["played_indices"] | |
| low_res_image, label_idx = cifar100_dataset[current_image_idx] | |
| current_label = cifar100_labels[label_idx] | |
| ai_guess = predict_ai(low_res_image) | |
| if user_guess.lower().strip() == current_label.lower(): | |
| user_score += 1 | |
| if ai_guess.lower() == current_label.lower(): | |
| ai_score += 1 | |
| if len(played_indices) >= len(cifar100_dataset): | |
| message = f"AI's Guess: '{ai_guess}'\nCorrect Answer: '{current_label}'\n\nAll images have been played! Game Over." | |
| next_high_res_image = None | |
| else: | |
| while True: | |
| next_image_idx = random.randint(0, len(cifar100_dataset) - 1) | |
| if next_image_idx not in played_indices: | |
| break | |
| next_low_res_image, _ = cifar100_dataset[next_image_idx] | |
| next_high_res_image = upscale_image(next_low_res_image) | |
| message = f"AI's Guess: '{ai_guess}'\nCorrect Answer: '{current_label}'" | |
| state["current_image_idx"] = next_image_idx | |
| played_indices.add(next_image_idx) | |
| new_state = { | |
| "user_score": user_score, | |
| "ai_score": ai_score, | |
| "current_image_idx": state["current_image_idx"], | |
| "played_indices": played_indices | |
| } | |
| return user_score, ai_score, message, "", next_high_res_image, new_state | |
| def start_game(): | |
| if not classifier_model or not sr_model: | |
| return 0, 0, "A required AI model failed to load. Please restart.", "", None, {} | |
| first_idx = random.randint(0, len(cifar100_dataset) - 1) | |
| first_low_res_image, _ = cifar100_dataset[first_idx] | |
| first_high_res_image = upscale_image(first_low_res_image) | |
| initial_state = { | |
| "user_score": 0, | |
| "ai_score": 0, | |
| "current_image_idx": first_idx, | |
| "played_indices": {first_idx} | |
| } | |
| return 0, 0, "Game Start! What is this high-resolution image?", "", first_high_res_image, initial_state | |
| with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as demo: | |
| state = gr.State() | |
| gr.Markdown("<h1>Human vs. AI: Super-Resolution Battle</h1>") | |
| gr.Markdown("A Swin2SR AI has upscaled a 32x32 image for you. Can you guess it before the other AI, which only sees the original low-res image?") | |
| with gr.Row(): | |
| user_score_display = gr.Number(label="Your Score", value=0, interactive=False) | |
| ai_score_display = gr.Number(label="AI Score", value=0, interactive=False) | |
| with gr.Row(equal_height=False): | |
| with gr.Column(scale=2): | |
| image_display = gr.Image(label="Guess this upscaled image!", type="pil", height=400, width=400, interactive=False) | |
| result_display = gr.Textbox(label="Round Result", interactive=False, lines=3) | |
| with gr.Column(scale=1): | |
| user_input = gr.Textbox(label="What is this image?", placeholder="e.g., apple, bicycle, cloud...") | |
| submit_button = gr.Button("Submit Guess", variant="primary") | |
| with gr.Accordion("View All 100 Categories", open=False): | |
| gr.Markdown(generate_category_markdown()) | |
| submit_button.click(fn=battle, inputs=[user_input, state], outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) | |
| user_input.submit(fn=battle, inputs=[user_input, state], outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) | |
| demo.load(fn=start_game, inputs=None, outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) | |
| if __name__ == "__main__": | |
| demo.launch() |