cloudzy_ai_challenge / AI_USAGE_REPORT.txt
matinsn2000's picture
Utilized two models and faliover for retreieving image meta data
4d4fccb
raw
history blame
5.78 kB
================================================================================
AI USAGE REPORT (SUMMARY)
Cloudzy AI Challenge - Photo Album Management System
================================================================================
PROJECT OVERVIEW
================
AI-enhanced photo management system with semantic search, album summarization,
and image generation capabilities.
================================================================================
AI MODELS USED
================================================================================
1. IMAGE EMBEDDING: intfloat/multilingual-e5-large
- Location: cloudzy/ai_utils.py (ImageEmbeddingGenerator)
- Purpose: Convert photo metadata into 1024-d vectors for similarity search
- Used in: Photo upload, semantic search, album clustering
2. SUMMARIZATION: facebook/bart-large-cnn
- Location: cloudzy/ai_utils.py (TextSummarizer)
- Purpose: Generate summaries of photo clusters
- Used in: /albums endpoint (creates album descriptions)
3. IMAGE ANALYSIS: Google Gemini 2.0-flash
- Location: cloudzy/agents/image_analyzer_2.py (ImageAnalyzerAgent)
- Purpose: Analyze images and generate detailed descriptions
- Used in: /generate-similar-image endpoint (Step 1)
4. IMAGE GENERATION: black-forest-labs/FLUX.1-dev
- Location: cloudzy/inference_models/text_to_image.py (TextToImageGenerator)
- Purpose: Generate high-quality images from text prompts
- Used in: /generate-similar-image endpoint (Step 3)
================================================================================
MANUAL VS AI-GENERATED
================================================================================
MANUAL WORK (100% Developer-Written):
βœ“ Database schema, API routes, file management
βœ“ FastAPI application setup and middleware
βœ“ Error handling and validation logic
βœ“ File upload service and utilities
βœ“ FAISS vector search implementation
HYBRID (Manual Integration + AI Models):
βœ“ ImageEmbeddingGenerator: Text β†’ 1024-d embeddings (AI model)
βœ“ TextSummarizer: Metadata β†’ album summary (AI model)
βœ“ ImageAnalyzerAgent: Image β†’ description (AI model)
βœ“ TextToImageGenerator: Prompt β†’ generated image (AI model)
AI-GENERATED CONTENT:
βœ“ Embedding vectors (semantic representations)
βœ“ Album summaries (cluster descriptions)
βœ“ Image descriptions (visual analysis)
βœ“ Generated images (from text prompts)
================================================================================
NEW ENDPOINT: /generate-similar-image
================================================================================
Endpoint: POST /generate-similar-image
Location: cloudzy/routes/generate.py
Workflow:
1. User uploads an image
2. ImageAnalyzerAgent analyzes it β†’ gets description
3. TextToImageGenerator creates new image from description
4. Returns generated image URL + description
Response:
{
"description": "Detailed image analysis from Gemini",
"generated_image_url": "http://127.0.0.1:8000/uploads/generated_20241025_123456_789.png",
"message": "Similar image generated successfully"
}
Performance: ~40-75 seconds per request
- Image analysis: ~5-10s (Gemini)
- Image generation: ~30-60s (FLUX.1-dev)
================================================================================
PROMPTS USED IN PROJECT
================================================================================
1. IMAGE ANALYSIS PROMPT (ImageAnalyzerAgent - Gemini):
Location: cloudzy/agents/image_analyzer_2.py
"Describe this image in a way that could be used as a prompt for generating
a new image inspired by it. Focus on the main subjects, composition, style,
mood, and colors. Avoid mentioning specific names or exact details β€” instead,
describe the overall aesthetic and atmosphere so the result feels similar but
not identical."
2. IMAGE GENERATION PROMPT:
- Input: Description from ImageAnalyzerAgent (above)
- Model: FLUX.1-dev (black-forest-labs/FLUX.1-dev)
- Location: cloudzy/inference_models/text_to_image.py
- Strategy: Direct prompt passing to image generation model
================================================================================
ENVIRONMENT VARIABLES
================================================================================
Required:
- HF_TOKEN: Hugging Face API key (embeddings, summarization)
- GEMINI_API_KEY: Google Gemini API key (image analysis)
- HF_TOKEN_1: Alternative HF token (image generation)
- APP_DOMAIN: App URL (default: http://127.0.0.1:8000/)
================================================================================
KEY DECISIONS
================================================================================
1. Used FLUX.1-dev for high-quality image generation (vs Stable Diffusion)
2. Composable pipeline: ImageAnalyzer β†’ TextToImageGenerator (reusable components)
3. Graceful error handling with fallbacks when APIs unavailable
4. Temporary file handling: saves uploads locally for Gemini analysis
================================================================================
SUMMARY
================================================================================
This project integrates 4 AI models responsibly:
- Embeddings for semantic search
- Summarization for album descriptions
- Vision AI for image analysis
- Generative AI for image creation
All manual work handles infrastructure, logic, validation, and error handling.
AI models are called for their specialized tasks only.
New capability: Generate creative image variations from uploaded photos using
intelligent analysis + high-quality generation pipeline.
================================================================================