Spaces:
Sleeping
Sleeping
| from PIL import Image | |
| import sys | |
| import re | |
| import streamlit as st | |
| from streamlit_feedback import streamlit_feedback | |
| from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data | |
| from vectara_agentic.agent import AgentStatusType | |
| from agent import initialize_agent, get_agent_config | |
| initial_prompt = "How can I help you today?" | |
| def show_example_questions(): | |
| if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: | |
| selected_example = st.pills("Queries to Try:", st.session_state.example_messages, default=None) | |
| if selected_example: | |
| st.session_state.ex_prompt = selected_example | |
| st.session_state.first_turn = False | |
| return True | |
| return False | |
| def format_log_msg(log_msg: str): | |
| max_log_msg_size = 500 | |
| return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...' | |
| def agent_progress_callback(status_type: AgentStatusType, msg: str): | |
| output = f'<span style="color:blue;">{status_type.value}</span>: {msg}' | |
| st.session_state.log_messages.append(output) | |
| if 'status' in st.session_state: | |
| latest_message = '' | |
| if status_type == AgentStatusType.TOOL_CALL: | |
| match = re.search(r"'([^']*)'", msg) | |
| tool_name = match.group(1) if match else "Unknown tool" | |
| latest_message = f"Calling tool {tool_name}..." | |
| elif status_type == AgentStatusType.TOOL_OUTPUT: | |
| latest_message = "Analyzing tool output..." | |
| else: | |
| return | |
| st.session_state.status.update(label=latest_message) | |
| with st.session_state.status: | |
| for log_msg in st.session_state.log_messages: | |
| st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) | |
| def show_modal(): | |
| for log_msg in st.session_state.log_messages: | |
| st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) | |
| async def launch_bot(): | |
| def reset(): | |
| st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "π¦"}] | |
| st.session_state.log_messages = [] | |
| st.session_state.prompt = None | |
| st.session_state.ex_prompt = None | |
| st.session_state.first_turn = True | |
| st.session_state.show_logs = False | |
| if 'agent' not in st.session_state: | |
| st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback) | |
| else: | |
| st.session_state.agent.clear_memory() | |
| if 'cfg' not in st.session_state: | |
| cfg = get_agent_config() | |
| st.session_state.cfg = cfg | |
| st.session_state.ex_prompt = None | |
| example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else [] | |
| st.session_state.example_messages = [em for em in example_messages if len(em)>0] | |
| reset() | |
| cfg = st.session_state.cfg | |
| # left side content | |
| with st.sidebar: | |
| image = Image.open('Vectara-logo.png') | |
| st.image(image, width=175) | |
| st.markdown(f"## {cfg['demo_welcome']}") | |
| st.markdown(f"{cfg['demo_description']}") | |
| st.markdown("\n\n") | |
| bc1, bc2 = st.columns([1, 1]) | |
| with bc1: | |
| if st.button('Start Over'): | |
| reset() | |
| st.rerun() | |
| with bc2: | |
| if st.button('Show Logs'): | |
| show_modal() | |
| # st.divider() | |
| # st.markdown( | |
| # "## How this works?\n" | |
| # "This app was built with [Vectara](https://vectara.com).\n\n" | |
| # "It demonstrates the use of Agentic RAG functionality with Vectara" | |
| # ) | |
| if "messages" not in st.session_state.keys(): | |
| reset() | |
| # Display chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"], avatar=message["avatar"]): | |
| st.write(message["content"]) | |
| example_container = st.empty() | |
| with example_container: | |
| if show_example_questions(): | |
| example_container.empty() | |
| st.session_state.first_turn = False | |
| st.rerun() | |
| # User-provided prompt | |
| if st.session_state.ex_prompt: | |
| prompt = st.session_state.ex_prompt | |
| else: | |
| prompt = st.chat_input() | |
| if prompt: | |
| st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) | |
| st.session_state.prompt = prompt | |
| st.session_state.log_messages = [] | |
| st.session_state.show_logs = False | |
| with st.chat_message("user", avatar='π§βπ»'): | |
| print(f"Starting new question: {prompt}\n") | |
| st.write(prompt) | |
| st.session_state.ex_prompt = None | |
| # Generate a new response if last message is not from assistant | |
| if st.session_state.prompt: | |
| with st.chat_message("assistant", avatar='π€'): | |
| st.session_state.status = st.status('Processing...', expanded=False) | |
| response = await st.session_state.agent.achat(st.session_state.prompt) | |
| res = escape_dollars_outside_latex(response.response) | |
| message = {"role": "assistant", "content": res, "avatar": 'π€'} | |
| st.session_state.messages.append(message) | |
| st.markdown(res) | |
| send_amplitude_data( | |
| user_query=st.session_state.messages[-2]["content"], | |
| bot_response=st.session_state.messages[-1]["content"], | |
| demo_name=cfg['demo_name'] | |
| ) | |
| st.session_state.ex_prompt = None | |
| st.session_state.prompt = None | |
| st.session_state.first_turn = False | |
| st.rerun() | |
| # Record user feedback | |
| if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt): | |
| if "feedback_key" not in st.session_state: | |
| st.session_state.feedback_key = 0 | |
| streamlit_feedback( | |
| feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key), | |
| kwargs={"user_query": st.session_state.messages[-2]["content"], | |
| "bot_response": st.session_state.messages[-1]["content"], | |
| "demo_name": cfg["demo_name"]} | |
| ) | |
| sys.stdout.flush() | |