File size: 10,988 Bytes
b59a5d0 f26f75a b59a5d0 f26f75a b59a5d0 05b75ca b59a5d0 5cc84ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
"""
Transformers.js Benchmark Leaderboard
A Gradio app that displays benchmark results from a HuggingFace Dataset repository.
"""
import os
import logging
import pandas as pd
import gradio as gr
from dotenv import load_dotenv
from data_loader import (
load_benchmark_data,
get_unique_values,
get_webgpu_beginner_friendly_models,
format_recommended_models_as_markdown,
)
from formatters import apply_formatting
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# Load environment variables
load_dotenv()
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
HF_TOKEN = os.getenv("HF_TOKEN")
def load_data() -> pd.DataFrame:
"""Load benchmark data from configured HF Dataset repository."""
# Load raw data
df = load_benchmark_data(
dataset_repo=HF_DATASET_REPO,
token=HF_TOKEN,
)
return df
def format_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""Apply formatting to dataframe for display."""
if df.empty:
return df
return df.apply(lambda row: pd.Series(apply_formatting(row.to_dict())), axis=1)
def filter_data(
df: pd.DataFrame,
model_filter: str,
task_filter: str,
platform_filter: str,
device_filter: str,
mode_filter: str,
dtype_filter: str,
status_filter: str,
) -> pd.DataFrame:
"""Filter benchmark data based on user inputs."""
if df.empty:
return df
filtered = df.copy()
# Model name filter
if model_filter:
filtered = filtered[
filtered["modelId"].str.contains(model_filter, case=False, na=False)
]
# Task filter
if task_filter and task_filter != "All":
filtered = filtered[filtered["task"] == task_filter]
# Platform filter
if platform_filter and platform_filter != "All":
filtered = filtered[filtered["platform"] == platform_filter]
# Device filter
if device_filter and device_filter != "All":
filtered = filtered[filtered["device"] == device_filter]
# Mode filter
if mode_filter and mode_filter != "All":
filtered = filtered[filtered["mode"] == mode_filter]
# DType filter
if dtype_filter and dtype_filter != "All":
filtered = filtered[filtered["dtype"] == dtype_filter]
# Status filter
if status_filter and status_filter != "All":
filtered = filtered[filtered["status"] == status_filter]
return filtered
def create_leaderboard_ui():
"""Create the Gradio UI for the leaderboard."""
# Load initial data
df = load_data()
formatted_df = format_dataframe(df)
with gr.Blocks(title="Transformers.js Benchmark Leaderboard") as demo:
# Cache raw data in Gradio state to avoid reloading on every filter change
raw_data_state = gr.State(df)
gr.Markdown("# π Transformers.js Benchmark Leaderboard")
gr.Markdown(
"Compare benchmark results for different models, platforms, and configurations."
)
if not HF_DATASET_REPO:
gr.Markdown(
"β οΈ **HF_DATASET_REPO not configured.** "
"Please set the environment variable to load benchmark data."
)
gr.Markdown(
"π‘ **Tip:** Use the recommended models section below to find popular models "
"that are fast to load and quick to run - perfect for getting started!"
)
# Recommended models section
gr.Markdown("## β Recommended WebGPU Models for Beginners")
gr.Markdown(
"These models are selected for being:\n"
"- **WebGPU compatible** - Work in modern browsers with GPU acceleration\n"
"- **Beginner-friendly** - Popular, fast to load, and quick to run\n"
"- Sorted by task type, showing top 3-5 models per task"
)
# Get recommended models
recommended_models = get_webgpu_beginner_friendly_models(df, limit_per_task=5)
formatted_recommended = format_dataframe(recommended_models)
markdown_output = format_recommended_models_as_markdown(recommended_models)
recommended_table = gr.DataFrame(
value=formatted_recommended,
label="Top WebGPU-Compatible Models by Task",
interactive=False,
wrap=True,
)
gr.Markdown("### π Markdown Output for llms.txt")
gr.Markdown(
"Copy the markdown below to embed in your llms.txt or documentation:"
)
markdown_textbox = gr.Textbox(
value=markdown_output,
label="Markdown for llms.txt",
lines=20,
max_lines=30,
show_copy_button=True,
interactive=False,
)
gr.Markdown("---")
gr.Markdown("## π Full Benchmark Results")
with gr.Row():
refresh_btn = gr.Button("π Refresh Data", variant="primary")
with gr.Row():
model_filter = gr.Textbox(
label="Model Name",
placeholder="Filter by model name (e.g., 'bert', 'gpt')",
)
task_filter = gr.Dropdown(
label="Task",
choices=get_unique_values(df, "task"),
value="All",
)
with gr.Row():
platform_filter = gr.Dropdown(
label="Platform",
choices=get_unique_values(df, "platform"),
value="All",
)
device_filter = gr.Dropdown(
label="Device",
choices=get_unique_values(df, "device"),
value="All",
)
with gr.Row():
mode_filter = gr.Dropdown(
label="Mode",
choices=get_unique_values(df, "mode"),
value="All",
)
dtype_filter = gr.Dropdown(
label="DType",
choices=get_unique_values(df, "dtype"),
value="All",
)
status_filter = gr.Dropdown(
label="Status",
choices=get_unique_values(df, "status"),
value="All",
)
results_table = gr.DataFrame(
value=formatted_df,
label="All Benchmark Results",
interactive=False,
wrap=True,
)
gr.Markdown("### π Metrics")
gr.Markdown(
"**Benchmark Metrics:**\n"
"- **load_ms**: Model loading time in milliseconds\n"
"- **first_infer_ms**: First inference time in milliseconds\n"
"- **subsequent_infer_ms**: Subsequent inference time in milliseconds\n"
"- **p50/p90**: 50th and 90th percentile values\n\n"
"**HuggingFace Metrics:**\n"
"- **downloads**: Total downloads from HuggingFace Hub\n"
"- **likes**: Number of likes on HuggingFace Hub\n\n"
"**WebGPU Compatibility:**\n"
"- Models in the recommended section are all WebGPU compatible\n"
"- WebGPU enables GPU acceleration in modern browsers\n\n"
"**β οΈ Important Note About Performance Metrics:**\n"
"All metrics are measured in a controlled benchmark environment. "
"They are useful for **comparing models against each other**, but may not reflect "
"actual performance in your environment. Factors like hardware, browser, OS, and system load affect real-world performance. "
"We recommend testing models in your own environment for accurate measurements."
)
def update_data():
"""Reload data from HuggingFace."""
new_df = load_data()
formatted_new_df = format_dataframe(new_df)
# Update recommended models
new_recommended = get_webgpu_beginner_friendly_models(new_df, limit_per_task=5)
formatted_new_recommended = format_dataframe(new_recommended)
new_markdown = format_recommended_models_as_markdown(new_recommended)
return (
new_df, # Update cached raw data
formatted_new_recommended, # Update recommended models
new_markdown, # Update markdown output
formatted_new_df,
gr.update(choices=get_unique_values(new_df, "task")),
gr.update(choices=get_unique_values(new_df, "platform")),
gr.update(choices=get_unique_values(new_df, "device")),
gr.update(choices=get_unique_values(new_df, "mode")),
gr.update(choices=get_unique_values(new_df, "dtype")),
gr.update(choices=get_unique_values(new_df, "status")),
)
def apply_filters(raw_df, model, task, platform, device, mode, dtype, status):
"""Apply filters and return filtered DataFrame."""
# Use cached raw data instead of reloading
filtered = filter_data(raw_df, model, task, platform, device, mode, dtype, status)
return format_dataframe(filtered)
# Refresh button updates data and resets filters
refresh_btn.click(
fn=update_data,
outputs=[
raw_data_state,
recommended_table,
markdown_textbox,
results_table,
task_filter,
platform_filter,
device_filter,
mode_filter,
dtype_filter,
status_filter,
],
)
# Filter inputs update the table (using cached raw data)
filter_inputs = [
raw_data_state,
model_filter,
task_filter,
platform_filter,
device_filter,
mode_filter,
dtype_filter,
status_filter,
]
model_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
task_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
platform_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
device_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
mode_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
dtype_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
status_filter.change(
fn=apply_filters,
inputs=filter_inputs,
outputs=results_table,
)
return demo
demo = create_leaderboard_ui()
demo.launch()
|