File size: 33,687 Bytes
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955b6a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955b6a7
 
 
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955b6a7
 
 
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b75ca
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b75ca
 
 
 
 
 
 
 
 
 
 
 
 
b59a5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
"""
Data loader module for loading benchmark results from HuggingFace Dataset.
"""

import json
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional
from datetime import datetime
import pandas as pd
from huggingface_hub import snapshot_download, list_models

logger = logging.getLogger(__name__)


def load_benchmark_data(
    dataset_repo: str,
    token: Optional[str] = None,
) -> pd.DataFrame:
    """Load benchmark data from HuggingFace Dataset repository.

    Args:
        dataset_repo: HuggingFace dataset repository ID (e.g., "username/dataset-name")
        token: HuggingFace API token (optional, for private datasets)

    Returns:
        DataFrame containing all benchmark results
    """
    if not dataset_repo:
        return pd.DataFrame()

    try:
        # Download the entire repository snapshot
        logger.info(f"Downloading dataset snapshot from {dataset_repo}...")
        local_dir = snapshot_download(
            repo_id=dataset_repo,
            repo_type="dataset",
            token=token,
        )
        logger.info(f"Dataset downloaded to {local_dir}")

        # Find all JSON files in the downloaded directory
        local_path = Path(local_dir)
        json_files = list(local_path.rglob("*.json"))

        if not json_files:
            logger.warning("No JSON files found in dataset")
            return pd.DataFrame()

        logger.info(f"Found {len(json_files)} JSON files")

        # Load all benchmark results
        all_results = []
        for file_path in json_files:
            try:
                with open(file_path, "r") as f:
                    result = json.load(f)

                if result:
                    flattened = flatten_result(result)
                    all_results.append(flattened)
            except Exception as e:
                logger.error(f"Error loading {file_path}: {e}")
                continue

        if not all_results:
            return pd.DataFrame()

        logger.info(f"Loaded {len(all_results)} benchmark results")

        # Convert to DataFrame
        df = pd.DataFrame(all_results)

        # Enrich with HuggingFace model metadata
        df = enrich_with_hf_metadata(df)

        # Add first-timer-friendly score
        df = add_first_timer_score(df)

        # Sort by model name and timestamp
        if "modelId" in df.columns and "timestamp" in df.columns:
            df = df.sort_values(["modelId", "timestamp"], ascending=[True, False])

        return df

    except Exception as e:
        logger.error(f"Error loading benchmark data: {e}")
        return pd.DataFrame()


def flatten_result(result: Dict[str, Any]) -> Dict[str, Any]:
    """Flatten nested benchmark result for display.

    The HF Dataset format is already flattened by the bench service,
    so we just need to extract the relevant fields.

    Args:
        result: Raw benchmark result dictionary

    Returns:
        Flattened dictionary with extracted fields
    """
    # Convert timestamp from milliseconds to datetime
    timestamp_ms = result.get("timestamp", 0)
    timestamp_dt = None
    if timestamp_ms:
        try:
            timestamp_dt = datetime.fromtimestamp(timestamp_ms / 1000)
        except (ValueError, OSError):
            timestamp_dt = None

    # Determine actual status - if there's an error, it should be "failed"
    status = result.get("status", "")
    if "error" in result:
        status = "failed"

    flat = {
        "id": result.get("id", ""),
        "platform": result.get("platform", ""),
        "modelId": result.get("modelId", ""),
        "task": result.get("task", ""),
        "mode": result.get("mode", ""),
        "repeats": result.get("repeats", 0),
        "batchSize": result.get("batchSize", 0),
        "device": result.get("device", ""),
        "browser": result.get("browser", ""),
        "dtype": result.get("dtype", ""),
        "headed": result.get("headed", False),
        "status": status,
        "timestamp": timestamp_dt,
        "runtime": result.get("runtime", ""),
        # Initialize metric fields with None (will be filled if metrics exist)
        "load_ms_p50": None,
        "load_ms_p90": None,
        "first_infer_ms_p50": None,
        "first_infer_ms_p90": None,
        "subsequent_infer_ms_p50": None,
        "subsequent_infer_ms_p90": None,
    }

    # Extract metrics if available (already at top level)
    if "metrics" in result:
        metrics = result["metrics"]

        # Load time
        if "load_ms" in metrics and "p50" in metrics["load_ms"]:
            flat["load_ms_p50"] = metrics["load_ms"]["p50"]
            flat["load_ms_p90"] = metrics["load_ms"]["p90"]

        # First inference time
        if "first_infer_ms" in metrics and "p50" in metrics["first_infer_ms"]:
            flat["first_infer_ms_p50"] = metrics["first_infer_ms"]["p50"]
            flat["first_infer_ms_p90"] = metrics["first_infer_ms"]["p90"]

        # Subsequent inference time
        if "subsequent_infer_ms" in metrics and "p50" in metrics["subsequent_infer_ms"]:
            flat["subsequent_infer_ms_p50"] = metrics["subsequent_infer_ms"]["p50"]
            flat["subsequent_infer_ms_p90"] = metrics["subsequent_infer_ms"]["p90"]

    # Extract environment info (already at top level)
    if "environment" in result:
        env = result["environment"]
        flat["cpuCores"] = env.get("cpuCores", 0)
        if "memory" in env:
            flat["memory_gb"] = env["memory"].get("deviceMemory", 0)

    # Calculate duration
    if "completedAt" in result and "startedAt" in result:
        flat["duration_s"] = (result["completedAt"] - result["startedAt"]) / 1000

    return flat


def enrich_with_hf_metadata(df: pd.DataFrame) -> pd.DataFrame:
    """Enrich benchmark data with HuggingFace model metadata (downloads, likes).

    Args:
        df: DataFrame containing benchmark results
        token: HuggingFace API token (optional)

    Returns:
        DataFrame with added downloads and likes columns
    """
    if df.empty or "modelId" not in df.columns:
        return df

    # Get unique model IDs
    model_ids = df["modelId"].unique().tolist()

    # Fetch metadata for all models
    model_metadata = {}
    logger.info(f"Fetching metadata for {len(model_ids)} models from HuggingFace...")

    try:
        for model in list_models(filter=["transformers.js"]):
            if model.id in model_ids:
                model_metadata[model.id] = {
                    "downloads": model.downloads or 0,
                    "likes": model.likes or 0,
                }

                # Break early if we have all models
                if len(model_metadata) == len(model_ids):
                    break

    except Exception as e:
        logger.error(f"Error fetching HuggingFace metadata: {e}")

    # Add metadata to dataframe
    df["downloads"] = df["modelId"].map(lambda x: model_metadata.get(x, {}).get("downloads", 0))
    df["likes"] = df["modelId"].map(lambda x: model_metadata.get(x, {}).get("likes", 0))

    return df


def add_first_timer_score(df: pd.DataFrame) -> pd.DataFrame:
    """Add first-timer-friendly score to all rows in the dataframe.

    The score is calculated per task, normalized from 0-100 where:
    - Higher score = better for first-timers
    - Based on: downloads (25%), likes (15%), load time (30%), inference time (30%)

    Args:
        df: DataFrame containing benchmark results

    Returns:
        DataFrame with added 'first_timer_score' column
    """
    if df.empty:
        return df

    # Filter only successful benchmarks
    filtered = df[df["status"] == "completed"].copy() if "status" in df.columns else df.copy()

    if filtered.empty:
        # Add empty score column for failed benchmarks
        df["first_timer_score"] = None
        return df

    # Check if task column exists
    if "task" not in filtered.columns:
        df["first_timer_score"] = None
        return df

    # Calculate score per task
    for task in filtered["task"].unique():
        task_mask = filtered["task"] == task
        task_df = filtered[task_mask].copy()

        if task_df.empty:
            continue

        # Normalize metrics within this task (0-1 scale)

        # Downloads score (0-1, higher is better)
        if "downloads" in task_df.columns:
            max_downloads = task_df["downloads"].max()
            downloads_score = task_df["downloads"] / max_downloads if max_downloads > 0 else 0
        else:
            downloads_score = 0

        # Likes score (0-1, higher is better)
        if "likes" in task_df.columns:
            max_likes = task_df["likes"].max()
            likes_score = task_df["likes"] / max_likes if max_likes > 0 else 0
        else:
            likes_score = 0

        # Load time score (0-1, lower time is better)
        if "load_ms_p50" in task_df.columns:
            max_load = task_df["load_ms_p50"].max()
            load_score = 1 - (task_df["load_ms_p50"] / max_load) if max_load > 0 else 0
        else:
            load_score = 0

        # Inference time score (0-1, lower time is better)
        if "first_infer_ms_p50" in task_df.columns:
            max_infer = task_df["first_infer_ms_p50"].max()
            infer_score = 1 - (task_df["first_infer_ms_p50"] / max_infer) if max_infer > 0 else 0
        else:
            infer_score = 0

        # Calculate weighted score and scale to 0-100
        weighted_score = (
            (downloads_score * 0.25) +
            (likes_score * 0.15) +
            (load_score * 0.30) +
            (infer_score * 0.30)
        ) * 100

        # Assign scores back to the filtered dataframe
        filtered.loc[task_mask, "first_timer_score"] = weighted_score

    # Merge scores back to original dataframe
    if "first_timer_score" in filtered.columns:
        df = df.merge(
            filtered[["id", "first_timer_score"]],
            on="id",
            how="left"
        )
    else:
        df["first_timer_score"] = None

    return df


def filter_excluded_models(df: pd.DataFrame) -> pd.DataFrame:
    """Filter out models that should be excluded from recommendations.

    This function removes test models and other non-production models that
    should not be recommended to users.

    Args:
        df: DataFrame containing model data with a 'modelId' column

    Returns:
        DataFrame with excluded models removed
    """
    if df.empty or "modelId" not in df.columns:
        return df

    # Exclude tiny-random test models (e.g., Xenova/tiny-random-RoFormerForMaskedLM)
    # These are small test models not meant for production use
    filtered = df[~df["modelId"].str.contains("tiny-random", case=False, na=False)]

    return filtered


def get_first_timer_friendly_models(df: pd.DataFrame, limit_per_task: int = 3) -> pd.DataFrame:
    """Identify first-timer-friendly models based on popularity and performance, grouped by task.

    A model is considered first-timer-friendly if it:
    - Has high downloads (popular)
    - Has fast load times (easy to start)
    - Has fast inference times (quick results)
    - Successfully completed benchmarks

    Args:
        df: DataFrame containing benchmark results
        limit_per_task: Maximum number of models to return per task

    Returns:
        DataFrame with top first-timer-friendly models per task
    """
    if df.empty:
        return pd.DataFrame()

    # Filter only successful benchmarks
    filtered = df[df["status"] == "completed"].copy() if "status" in df.columns else df.copy()

    # Exclude test models and other non-production models
    filtered = filter_excluded_models(filtered)

    if filtered.empty:
        return pd.DataFrame()

    # Check if task column exists
    if "task" not in filtered.columns:
        logger.warning("Task column not found in dataframe")
        return pd.DataFrame()

    # Calculate first-timer-friendliness score per task
    all_results = []

    for task in filtered["task"].unique():
        task_df = filtered[filtered["task"] == task].copy()

        if task_df.empty:
            continue

        # Normalize metrics within this task (lower is better for times, higher is better for popularity)

        # Downloads score (0-1, higher is better)
        if "downloads" in task_df.columns:
            max_downloads = task_df["downloads"].max()
            task_df["downloads_score"] = task_df["downloads"] / max_downloads if max_downloads > 0 else 0
        else:
            task_df["downloads_score"] = 0

        # Likes score (0-1, higher is better)
        if "likes" in task_df.columns:
            max_likes = task_df["likes"].max()
            task_df["likes_score"] = task_df["likes"] / max_likes if max_likes > 0 else 0
        else:
            task_df["likes_score"] = 0

        # Load time score (0-1, lower time is better)
        if "load_ms_p50" in task_df.columns:
            max_load = task_df["load_ms_p50"].max()
            task_df["load_score"] = 1 - (task_df["load_ms_p50"] / max_load) if max_load > 0 else 0
        else:
            task_df["load_score"] = 0

        # Inference time score (0-1, lower time is better)
        if "first_infer_ms_p50" in task_df.columns:
            max_infer = task_df["first_infer_ms_p50"].max()
            task_df["infer_score"] = 1 - (task_df["first_infer_ms_p50"] / max_infer) if max_infer > 0 else 0
        else:
            task_df["infer_score"] = 0

        # Calculate weighted first-timer-friendliness score
        # Weights: popularity (40%), load time (30%), inference time (30%)
        task_df["first_timer_score"] = (
            (task_df["downloads_score"] * 0.25) +
            (task_df["likes_score"] * 0.15) +
            (task_df["load_score"] * 0.30) +
            (task_df["infer_score"] * 0.30)
        )

        # Group by model and take best score for each model within this task
        # Filter out NaN scores before getting idxmax
        idx_max_series = task_df.groupby("modelId")["first_timer_score"].idxmax()
        # Drop NaN indices
        valid_indices = idx_max_series.dropna()
        if valid_indices.empty:
            continue
        best_per_model = task_df.loc[valid_indices]

        # Sort by first-timer score and take top N for this task
        top_for_task = best_per_model.sort_values("first_timer_score", ascending=False).head(limit_per_task)

        # Drop intermediate scoring columns
        score_cols = ["downloads_score", "likes_score", "load_score", "infer_score", "first_timer_score"]
        top_for_task = top_for_task.drop(columns=[col for col in score_cols if col in top_for_task.columns])

        all_results.append(top_for_task)

    if not all_results:
        return pd.DataFrame()

    # Combine all results
    result = pd.concat(all_results, ignore_index=True)

    # Sort by task name for better organization
    if "task" in result.columns:
        result = result.sort_values("task")

    return result


def get_webgpu_beginner_friendly_models(
    df: pd.DataFrame,
    limit_per_task: int = 5
) -> pd.DataFrame:
    """Get top beginner-friendly models that are WebGPU compatible, grouped by task.

    A model is included if it:
    - Has high first_timer_score (popular, fast to load, fast inference)
    - Has successful WebGPU benchmark results (device=webgpu, status=completed)

    Args:
        df: DataFrame containing benchmark results
        limit_per_task: Maximum number of models to return per task (default: 5)

    Returns:
        DataFrame with top WebGPU-compatible beginner-friendly models per task
    """
    if df.empty:
        return pd.DataFrame()

    # Filter for WebGPU benchmarks that completed successfully
    webgpu_filter = (
        (df["device"] == "webgpu") &
        (df["status"] == "completed")
    )

    # Check if required columns exist
    if "device" not in df.columns or "status" not in df.columns:
        logger.warning("Required columns (device, status) not found in dataframe")
        return pd.DataFrame()

    filtered = df[webgpu_filter].copy()

    # Exclude test models and other non-production models
    filtered = filter_excluded_models(filtered)

    if filtered.empty:
        logger.warning("No successful WebGPU benchmarks found")
        return pd.DataFrame()

    # Check if required columns exist
    if "task" not in filtered.columns or "first_timer_score" not in filtered.columns:
        logger.warning("Required columns (task, first_timer_score) not found in filtered dataframe")
        return pd.DataFrame()

    # Group by task and get top models
    all_results = []

    for task in filtered["task"].unique():
        task_df = filtered[filtered["task"] == task].copy()

        if task_df.empty:
            continue

        # Remove rows with NaN first_timer_score
        task_df = task_df.dropna(subset=["first_timer_score"])

        if task_df.empty:
            continue

        # For each model, get the benchmark with the highest first_timer_score
        idx_max_series = task_df.groupby("modelId")["first_timer_score"].idxmax()
        valid_indices = idx_max_series.dropna()

        if valid_indices.empty:
            continue

        best_per_model = task_df.loc[valid_indices]

        # Sort by first_timer_score (descending) and take top N
        top_for_task = best_per_model.sort_values(
            "first_timer_score",
            ascending=False
        ).head(limit_per_task)

        all_results.append(top_for_task)

    if not all_results:
        logger.warning("No models found after filtering and grouping")
        return pd.DataFrame()

    # Combine all results
    result = pd.concat(all_results, ignore_index=True)

    # Sort by task, then by first_timer_score (descending)
    if "task" in result.columns and "first_timer_score" in result.columns:
        result = result.sort_values(
            ["task", "first_timer_score"],
            ascending=[True, False]
        )

    return result


def _get_usage_example(task_type: str, repo_id: str) -> tuple[str, str | None]:
    """Get usage example code snippet for a given task type.

    Args:
        task_type: The task type (e.g., 'text-generation', 'image-classification')
        repo_id: The model repository ID (e.g., 'Xenova/gpt2')

    Returns:
        Tuple of (code_snippet, description)
    """
    if task_type == "fill-mask":
        return f"""const unmasker = await pipeline('fill-mask', '{repo_id}');
const output = await unmasker('The goal of life is [MASK].');
""", 'Perform masked language modelling (a.k.a. "fill-mask")'
    elif task_type == "question-answering":
        return f"""const answerer = await pipeline('question-answering', '{repo_id}');
const question = 'Who was Jim Henson?';
const context = 'Jim Henson was a nice puppet.';
const output = await answerer(question, context);
""", 'Run question answering'
    elif task_type == "summarization":
        return f"""const generator = await pipeline('summarization', '{repo_id}');
const text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, ' +
  'and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. ' +
  'During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest ' +
  'man-made structure in the world, a title it held for 41 years until the Chrysler Building in New ' +
  'York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to ' +
  'the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the ' +
  'Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second ' +
  'tallest free-standing structure in France after the Millau Viaduct.';
const output = await generator(text, {{
  max_new_tokens: 100,
}});
""", 'Summarization'
    elif task_type == "sentiment-analysis" or task_type == "text-classification":
        return f"""const classifier = await pipeline('{task_type}', '{repo_id}');
const output = await classifier('I love transformers!');
""", None
    elif task_type == "text-generation":
        return f"""const generator = await pipeline('text-generation', '{repo_id}');
const output = await generator('Once upon a time, there was', {{ max_new_tokens: 10 }});
""", 'Text generation'
    elif task_type == "text2text-generation":
        return f"""const generator = await pipeline('text2text-generation', '{repo_id}');
const output = await generator('how can I become more healthy?', {{
  max_new_tokens: 100,
}});
""", 'Text-to-text generation'
    elif task_type == "token-classification" or task_type == "ner":
        return f"""const classifier = await pipeline('token-classification', '{repo_id}');
const output = await classifier('My name is Sarah and I live in London');
""", 'Perform named entity recognition'
    elif task_type == "translation":
        return f"""const translator = await pipeline('translation', '{repo_id}');
const output = await translator('Life is like a box of chocolate.', {{
  src_lang: '...',
  tgt_lang: '...',
}});
""", 'Multilingual translation'
    elif task_type == "zero-shot-classification":
        return f"""const classifier = await pipeline('zero-shot-classification', '{repo_id}');
const output = await classifier(
    'I love transformers!',
    ['positive', 'negative']
);
""", 'Zero shot classification'
    elif task_type == "feature-extraction":
        return f"""const extractor = await pipeline('feature-extraction', '{repo_id}');
const output = await extractor('This is a simple test.');
""", 'Run feature extraction'
# Vision
    elif task_type == "background-removal":
        return f"""const segmenter = await pipeline('background-removal', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman_small.jpg';
const output = await segmenter(url);
""", 'Perform background removal'
    elif task_type == "depth-estimation":
        return f"""const depth_estimator = await pipeline('depth-estimation', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const out = await depth_estimator(url);
""", 'Depth estimation'
    elif task_type == "image-classification":
        return f"""const classifier = await pipeline('image-classification', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url);
""", 'Classify an image'
    elif task_type == "image-segmentation":
        return f"""const segmenter = await pipeline('image-segmentation', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const output = await segmenter(url);
""", 'Perform image segmentation'
    elif task_type == "image-to-image":
        return f"""const processor = await pipeline('image-to-image', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await processor(url);
""", None
    elif task_type == "object-detection":
        return f"""const detector = await pipeline('object-detection', '{repo_id}');
const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const output = await detector(img, {{ threshold: 0.9 }});
""", 'Run object-detection'
    elif task_type == "image-feature-extraction":
        return f"""const image_feature_extractor = await pipeline('image-feature-extraction', '{repo_id}');
const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png';
const features = await image_feature_extractor(url);
""", 'Perform image feature extraction'
# Audio
    elif task_type == "audio-classification":
        return f"""const classifier = await pipeline('audio-classification', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await classifier(url);
""", 'Perform audio classification'
    elif task_type == "automatic-speech-recognition":
        return f"""const transcriber = await pipeline('automatic-speech-recognition', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
const output = await transcriber(url);
""", 'Transcribe audio from a URL'
    elif task_type == "text-to-audio" or task_type == "text-to-speech":
        return f"""const synthesizer = await pipeline('text-to-speech', '{repo_id}');
const output = await synthesizer('Hello, my dog is cute');
""", 'Generate audio from text'
# Multimodal
    elif task_type == "document-question-answering":
        return f"""const qa_pipeline = await pipeline('document-question-answering', '{repo_id}');
const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/invoice.png';
const question = 'What is the invoice number?';
const output = await qa_pipeline(image, question);
""", 'Answer questions about a document'
    elif task_type == "image-to-text":
        return f"""const captioner = await pipeline('image-to-text', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
const output = await captioner(url);
""", 'Generate a caption for an image'
    elif task_type == "zero-shot-audio-classification":
        return f"""const classifier = await pipeline('zero-shot-audio-classification', '{repo_id}');
const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav';
const candidate_labels = ['dog', 'vaccum cleaner'];
const scores = await classifier(audio, candidate_labels);
""", 'Perform zero-shot audio classification'
    elif task_type == "zero-shot-image-classification":
        return f"""const classifier = await pipeline('zero-shot-image-classification', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, ['tiger', 'horse', 'dog']);
""", 'Zero shot image classification'
    elif task_type == "zero-shot-object-detection":
        return f"""const detector = await pipeline('zero-shot-object-detection', '{repo_id}');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png';
const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag'];
const output = await detector(url, candidate_labels);
""", 'Zero-shot object detection'
    else:
        logger.warning(f"No usage example found for task type: {task_type}")
        return f"""const pipe = await pipeline('{task_type}', '{repo_id}');
const result = await pipe('input text or data');
console.log(result);
""", None


def format_recommended_models_as_markdown(df: pd.DataFrame) -> str:
    """Format recommended WebGPU models as markdown for llms.txt embedding.

    Args:
        df: DataFrame containing recommended models (output from get_webgpu_beginner_friendly_models)

    Returns:
        Formatted markdown string
    """
    if df.empty:
        return "No recommended models available."

    markdown_lines = [
        "# Recommended Transformers.js Models for First-Time Trials",
        "",
        "This guide provides curated model recommendations for each task type, selected for their:",
        "- **Popularity**: Widely used with strong community support",
        "- **Performance**: Fast loading and inference times",
        "- **WebGPU Compatibility**: GPU-accelerated in modern browsers",
        "",
        "**Important:** These recommendations are designed for initial experimentation and learning. "
        "Many other models are available for each task. "
        "**You should evaluate and choose the best model for your specific use case, performance requirements, and constraints.**",
        "",
        "## About the Model Recommendations",
        "",
        "The models below are selected for their popularity and ease of use, making them ideal for initial experimentation. "
        "**This list does not cover all available models** - you should evaluate and select the best model for your specific use case and requirements.",
        "",
    ]

    # Group by task
    if "task" not in df.columns:
        return "No task information available."

    for task in sorted(df["task"].unique()):
        task_df = df[df["task"] == task].copy()

        if task_df.empty:
            continue

        # Add task header
        markdown_lines.append(f"## {task.title()}")
        markdown_lines.append("")

        # Sort by first_timer_score descending
        if "first_timer_score" in task_df.columns:
            task_df = task_df.sort_values("first_timer_score", ascending=False)

        # Get the first/best model for the usage example
        first_row = task_df.iloc[0]
        first_model_id = first_row.get("modelId", "")

        # Add usage example using the top model
        if first_model_id:
            code_snippet, description = _get_usage_example(task, first_model_id)

            if description:
                markdown_lines.append(f"**Usage Example:** {description}")
            else:
                markdown_lines.append("**Usage Example:**")
            markdown_lines.append("")
            markdown_lines.append("```javascript")
            markdown_lines.append(code_snippet.strip())
            markdown_lines.append("```")
            markdown_lines.append("")

        # Add section header for model recommendations
        markdown_lines.append("### Recommended Models for First-Time Trials")
        markdown_lines.append("")

        # Add each model
        for idx, row in task_df.iterrows():
            model_id = row.get("modelId", "Unknown")
            score = row.get("first_timer_score", None)
            downloads = row.get("downloads", 0)
            likes = row.get("likes", 0)
            load_time = row.get("load_ms_p50", None)
            infer_time = row.get("first_infer_ms_p50", None)

            # Model entry
            markdown_lines.append(f"#### {model_id}")
            markdown_lines.append("")

            # WebGPU compatibility
            markdown_lines.append("**WebGPU Compatible:** ✅ Yes")
            markdown_lines.append("")

            # Metrics
            metrics = []
            if load_time is not None:
                metrics.append(f"Load: {load_time:.1f}ms")
            if infer_time is not None:
                metrics.append(f"Inference: {infer_time:.1f}ms")
            if downloads:
                if downloads >= 1_000_000:
                    downloads_str = f"{downloads / 1_000_000:.1f}M"
                elif downloads >= 1_000:
                    downloads_str = f"{downloads / 1_000:.1f}k"
                else:
                    downloads_str = str(downloads)
                metrics.append(f"Downloads: {downloads_str}")
            if likes:
                metrics.append(f"Likes: {likes}")

            if metrics:
                markdown_lines.append(f"**Metrics:** {' | '.join(metrics)}")

            markdown_lines.append("")

        markdown_lines.append("---")
        markdown_lines.append("")

    # Add footer
    markdown_lines.extend([
        "## About These Recommendations",
        "",
        "### Selection Criteria",
        "",
        "Models in this guide are selected based on:",
        "- **Popularity**: High download counts and community engagement on HuggingFace Hub",
        "- **Performance**: Fast loading and inference times based on benchmark results",
        "- **Compatibility**: Verified WebGPU support for GPU-accelerated browser execution",
        "",
        "### Understanding Benchmark Metrics",
        "",
        "**Important:** All performance metrics (load time, inference time, etc.) are measured in a controlled benchmark environment. "
        "These metrics are useful for **comparing models against each other**, but they may not reflect the actual performance you'll experience in your specific environment. "
        "Factors that affect real-world performance include:",
        "- Hardware specifications (CPU, GPU, memory)",
        "- Browser type and version",
        "- Operating system",
        "- Network conditions (for model loading)",
        "- Concurrent processes and system load",
        "",
        "**We recommend** benchmarking models in your own environment with your actual use case to get accurate performance measurements.",
        "",
        "### For Production Use",
        "",
        "These recommendations are optimized for first-time trials and learning. "
        "For production applications, consider:",
        "- Evaluating multiple models for your specific use case",
        "- Testing with your actual data and performance requirements",
        "- Reviewing the full benchmark results for comprehensive comparisons",
        "- Exploring specialized models that may better fit your needs",
        "",
        "Visit the full leaderboard to explore all available models and their benchmark results.",
    ])

    return "\n".join(markdown_lines)


def get_unique_values(df: pd.DataFrame, column: str) -> List[str]:
    """Get unique values from a column for dropdown choices.

    Args:
        df: DataFrame to extract values from
        column: Column name

    Returns:
        List of unique values with "All" as first item
    """
    if df.empty or column not in df.columns:
        return ["All"]

    values = df[column].dropna().unique().tolist()
    return ["All"] + sorted([str(v) for v in values])