Spaces:
Running
Running
| import sys | |
| import os | |
| from typing import Optional | |
| from PIL import Image as PILImage | |
| # Add the cloned nanoVLM directory to Python's system path | |
| NANOVLM_REPO_PATH = "/app/nanoVLM" # This path is where your Dockerfile clones huggingface/nanoVLM | |
| if NANOVLM_REPO_PATH not in sys.path: | |
| print(f"DEBUG: Adding {NANOVLM_REPO_PATH} to sys.path") | |
| sys.path.insert(0, NANOVLM_REPO_PATH) | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoProcessor # Using AutoProcessor as in the successful generate.py | |
| # Import the custom VisionLanguageModel class | |
| VisionLanguageModel = None | |
| try: | |
| print("DEBUG: Attempting to import VisionLanguageModel from models.vision_language_model") | |
| from models.vision_language_model import VisionLanguageModel | |
| print("DEBUG: Successfully imported VisionLanguageModel.") | |
| except ImportError as e: | |
| print(f"CRITICAL ERROR: Importing VisionLanguageModel failed: {e}") | |
| except Exception as e: | |
| print(f"CRITICAL ERROR: An unexpected error occurred during VisionLanguageModel import: {e}") | |
| # --- Device Setup --- | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"DEBUG: Using device: {device}") | |
| # --- Configuration --- | |
| model_repo_id = "lusxvr/nanoVLM-222M" # Used for both processor and model weights | |
| print(f"DEBUG: Model Repository ID for processor and model: {model_repo_id}") | |
| # --- Initialize --- | |
| processor = None | |
| model = None | |
| if VisionLanguageModel: # Only proceed if custom model class was imported | |
| try: | |
| # Load processor using AutoProcessor, mirroring generate.py | |
| print(f"DEBUG: Loading processor using AutoProcessor.from_pretrained('{model_repo_id}')") | |
| # generate.py doesn't explicitly use trust_remote_code=True for processor, | |
| # but it might be implicitly active in your local transformers or not needed if processor_config is clear. | |
| # Let's try without it first for AutoProcessor, then add if "Unrecognized model" for processor reappears. | |
| processor = AutoProcessor.from_pretrained(model_repo_id) # Try without TRC first for processor | |
| print(f"DEBUG: AutoProcessor loaded: {type(processor)}") | |
| # Ensure tokenizer has pad_token set if it's GPT-2 based (AutoProcessor should handle a tokenizer component) | |
| if hasattr(processor, 'tokenizer') and processor.tokenizer is not None: | |
| current_tokenizer = processor.tokenizer | |
| if getattr(current_tokenizer, 'pad_token', None) is None and hasattr(current_tokenizer, 'eos_token'): | |
| current_tokenizer.pad_token = current_tokenizer.eos_token | |
| print(f"DEBUG: Set processor.tokenizer.pad_token to eos_token (ID: {current_tokenizer.eos_token_id})") | |
| else: | |
| print("WARN: Processor does not have a 'tokenizer' attribute or it's None. Cannot set pad_token.") | |
| # Load model using VisionLanguageModel.from_pretrained, mirroring generate.py | |
| print(f"DEBUG: Loading model VisionLanguageModel.from_pretrained('{model_repo_id}')") | |
| # The custom VLM.from_pretrained doesn't take trust_remote_code | |
| model = VisionLanguageModel.from_pretrained(model_repo_id).to(device) | |
| print(f"DEBUG: VisionLanguageModel loaded: {type(model)}") | |
| model.eval() | |
| print("DEBUG: Model set to eval() mode.") | |
| except Exception as e: | |
| print(f"CRITICAL ERROR loading model or processor: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| processor = None; model = None # Ensure they are None if loading fails | |
| else: | |
| print("CRITICAL ERROR: VisionLanguageModel class not imported. Cannot load model.") | |
| # --- Text Generation Function --- | |
| def generate_text_for_image(image_input_pil: Optional[PILImage.Image], prompt_input_str: Optional[str]) -> str: | |
| print(f"DEBUG (generate_text_for_image): Received prompt: '{prompt_input_str}'") | |
| if model is None or processor is None: | |
| print("ERROR (generate_text_for_image): Model or processor not loaded.") | |
| return "Error: Model or processor not loaded. Please check the application logs." | |
| if image_input_pil is None: | |
| print("WARN (generate_text_for_image): No image uploaded.") | |
| return "Please upload an image." | |
| if not prompt_input_str: # Check for empty or None prompt | |
| print("WARN (generate_text_for_image): No prompt provided.") | |
| return "Please provide a prompt." | |
| try: | |
| current_pil_image = image_input_pil | |
| if not isinstance(current_pil_image, PILImage.Image): # Should be PIL from Gradio's type="pil" | |
| print(f"WARN (generate_text_for_image): Input image not PIL, type: {type(current_pil_image)}. Converting.") | |
| current_pil_image = PILImage.fromarray(current_pil_image) | |
| if current_pil_image.mode != "RGB": | |
| print(f"DEBUG (generate_text_for_image): Converting image from {current_pil_image.mode} to RGB.") | |
| current_pil_image = current_pil_image.convert("RGB") | |
| print(f"DEBUG (generate_text_for_image): Image prepped - size: {current_pil_image.size}, mode: {current_pil_image.mode}") | |
| # Prepare inputs using the AutoProcessor, as in generate.py | |
| print("DEBUG (generate_text_for_image): Processing inputs with AutoProcessor...") | |
| inputs = processor( | |
| text=[prompt_input_str], images=current_pil_image, return_tensors="pt" | |
| ).to(device) | |
| print(f"DEBUG (generate_text_for_image): Inputs from AutoProcessor - keys: {inputs.keys()}") | |
| print(f"DEBUG (generate_text_for_image): input_ids shape: {inputs['input_ids'].shape}, values: {inputs['input_ids']}") | |
| print(f"DEBUG (generate_text_for_image): pixel_values shape: {inputs['pixel_values'].shape}") | |
| attention_mask = inputs.get('attention_mask') | |
| if attention_mask is None: # Should be provided by AutoProcessor | |
| print("WARN (generate_text_for_image): attention_mask not in processor output. Creating default.") | |
| attention_mask = torch.ones_like(inputs['input_ids']).to(device) | |
| print(f"DEBUG (generate_text_for_image): attention_mask shape: {attention_mask.shape}") | |
| print("DEBUG (generate_text_for_image): Calling model.generate...") | |
| # Signature for nanoVLM's generate: (self, input_ids, image, attention_mask, max_new_tokens, ...) | |
| generated_ids_tensor = model.generate( | |
| inputs['input_ids'], | |
| inputs['pixel_values'], # This is the 'image' argument for the model's generate method | |
| attention_mask, | |
| max_new_tokens=50, # Consistent with successful generate.py test | |
| temperature=0.7, # From generate.py defaults (or adjust as preferred) | |
| top_k=50, # From generate.py defaults (or adjust as preferred) | |
| # greedy=False is default in nanoVLM's generate | |
| ) | |
| print(f"DEBUG (generate_text_for_image): Raw generated_ids: {generated_ids_tensor}") | |
| # Use processor.batch_decode, as in generate.py | |
| generated_text_list = processor.batch_decode(generated_ids_tensor, skip_special_tokens=True) | |
| print(f"DEBUG (generate_text_for_image): Decoded text list: {generated_text_list}") | |
| generated_text_str = generated_text_list[0] if generated_text_list else "" | |
| # Optional: Clean up prompt if echoed | |
| cleaned_text_str = generated_text_str | |
| if prompt_input_str and generated_text_str.startswith(prompt_input_str): | |
| cleaned_text_str = generated_text_str[len(prompt_input_str):].lstrip(" ,.:") | |
| print(f"DEBUG (generate_text_for_image): Final cleaned text: '{cleaned_text_str}'") | |
| return cleaned_text_str.strip() | |
| except Exception as e: | |
| print(f"CRITICAL ERROR during generation: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| return f"Error during generation: {str(e)}. Check logs." | |
| # --- Gradio Interface --- | |
| description_md = """ | |
| ## nanoVLM-222M Interactive Demo | |
| Upload an image and type a prompt to get a description or answer from the model. | |
| This Space uses the `lusxvr/nanoVLM-222M` model weights with the `huggingface/nanoVLM` model code. | |
| """ | |
| iface = None | |
| # Only define the interface if the model and processor loaded successfully | |
| if VisionLanguageModel and model and processor: | |
| try: | |
| print("DEBUG: Defining Gradio interface...") | |
| iface = gr.Interface( | |
| fn=generate_text_for_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Textbox(label="Your Prompt / Question", info="e.g., 'describe this image in detail'") | |
| ], | |
| outputs=gr.Textbox(label="Generated Text", show_copy_button=True), | |
| title="nanoVLM-222M Demo", | |
| description=description_md, | |
| allow_flagging="never" # No examples or caching for now to keep it simple | |
| ) | |
| print("DEBUG: Gradio interface defined successfully.") | |
| except Exception as e: | |
| print(f"CRITICAL ERROR defining Gradio interface: {e}") | |
| import traceback; traceback.print_exc() | |
| else: | |
| print("WARN: Model and/or processor did not load. Gradio interface will not be created.") | |
| # --- Launch Gradio App --- | |
| if __name__ == "__main__": | |
| print("DEBUG: Entered __main__ block for Gradio launch.") | |
| if iface is not None: | |
| print("DEBUG: Attempting to launch Gradio interface...") | |
| try: | |
| iface.launch(server_name="0.0.0.0", server_port=7860) | |
| print("DEBUG: Gradio launch command issued.") | |
| except Exception as e: | |
| print(f"CRITICAL ERROR launching Gradio interface: {e}") | |
| import traceback; traceback.print_exc() | |
| else: | |
| print("CRITICAL ERROR: Gradio interface (iface) is None or not defined due to loading errors. Cannot launch.") |