Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
| import gradio as gr | |
| # Check if a GPU is available and use it, otherwise use CPU | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Load the pre-trained model and tokenizer from the saved directory | |
| model_path = "blexus_pretrained_test" | |
| tokenizer = GPT2Tokenizer.from_pretrained(model_path) | |
| model = GPT2LMHeadModel.from_pretrained(model_path).to(device) | |
| # Set model to evaluation mode | |
| model.eval() | |
| # Function to generate text based on input prompt | |
| def generate_text(prompt): | |
| # Tokenize and encode the input prompt | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
| # Generate continuation | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| input_ids, | |
| max_length=50, # Maximum length of generated text | |
| num_return_sequences=1, # Generate 1 sequence | |
| pad_token_id=tokenizer.eos_token_id, # Use EOS token for padding | |
| do_sample=True, # Enable sampling | |
| top_k=50, # Top-k sampling | |
| top_p=0.95 # Nucleus sampling | |
| ) | |
| # Decode the generated text | |
| generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
| return generated_text | |
| # Create a Gradio interface | |
| interface = gr.Interface( | |
| fn=generate_text, # Function to call when interacting with the UI | |
| inputs="text", # Input type: Single-line text | |
| outputs="text", # Output type: Text (the generated output) | |
| title="Quble Text Generation", # Title of the UI | |
| description="Enter a prompt to generate text using Quble." # Simple description | |
| ) | |
| # Launch the Gradio app | |
| interface.launch() | |