Corex / ocr_service.py
yadavkapil23's picture
OCR implememntation
8959aae
"""
DeepSeek OCR Service Module
Handles OCR text extraction using DeepSeek-OCR model
"""
import os
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Optional, Dict, Any
import logging
from pathlib import Path
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class DeepSeekOCRService:
"""
Service class for DeepSeek OCR text extraction
"""
def __init__(self, model_name: str = None):
"""
Initialize the DeepSeek OCR service
Args:
model_name (str): Hugging Face model name for DeepSeek OCR
"""
self.model_name = model_name or os.getenv('DEEPSEEK_OCR_MODEL', 'deepseek-ai/DeepSeek-OCR')
self.model = None
self.tokenizer = None
# Device configuration - optimized for CPU
device_config = os.getenv('DEEPSEEK_OCR_DEVICE', 'cpu')
if device_config == 'auto':
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device_config
logger.info(f"Initializing DeepSeek OCR on device: {self.device}")
def load_model(self):
"""
Load the DeepSeek OCR model and tokenizer
"""
try:
logger.info(f"Loading DeepSeek OCR model: {self.model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
# CPU-optimized model loading
if self.device == "cpu":
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float32, # Use float32 for CPU
low_cpu_mem_usage=True, # Reduce memory usage
device_map="cpu" # Force CPU usage
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
)
self.model.to(self.device)
logger.info("DeepSeek OCR model loaded successfully")
except Exception as e:
logger.error(f"Failed to load DeepSeek OCR model: {str(e)}")
raise e
def extract_text_from_image(self, image_path: str, prompt: str = None) -> Dict[str, Any]:
"""
Extract text from an image using DeepSeek OCR
Args:
image_path (str): Path to the image file
prompt (str, optional): Custom prompt for OCR processing
Returns:
Dict containing extracted text and metadata
"""
if self.model is None or self.tokenizer is None:
self.load_model()
try:
# Load and preprocess the image
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert('RGB')
# Use default prompt if none provided
if prompt is None:
prompt = "<|grounding|>Extract all text from this image."
# Prepare inputs
inputs = self.tokenizer(
prompt,
image,
return_tensors="pt"
).to(self.device)
# Get configuration from environment - CPU optimized defaults
max_tokens = int(os.getenv('DEEPSEEK_OCR_MAX_TOKENS', '256')) # Reduced for CPU
temperature = float(os.getenv('DEEPSEEK_OCR_TEMPERATURE', '0.1'))
# Generate text extraction
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=False,
temperature=temperature,
pad_token_id=self.tokenizer.eos_token_id
)
# Decode the output
extracted_text = self.tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
# Clean up the extracted text
extracted_text = extracted_text.replace(prompt, "").strip()
return {
"success": True,
"extracted_text": extracted_text,
"image_path": image_path,
"model_used": self.model_name,
"device": self.device
}
except Exception as e:
logger.error(f"Error extracting text from image {image_path}: {str(e)}")
return {
"success": False,
"error": str(e),
"image_path": image_path
}
def extract_text_with_grounding(self, image_path: str, target_text: str = None) -> Dict[str, Any]:
"""
Extract text with grounding capabilities (locate specific text)
Args:
image_path (str): Path to the image file
target_text (str, optional): Specific text to locate in the image
Returns:
Dict containing extracted text and location information
"""
if self.model is None or self.tokenizer is None:
self.load_model()
try:
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert('RGB')
if target_text:
prompt = f"<|grounding|>Locate <|ref|>{target_text}<|/ref|> in the image."
else:
prompt = "<|grounding|>Extract all text from this image with location information."
inputs = self.tokenizer(
prompt,
image,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=False,
temperature=0.1,
pad_token_id=self.tokenizer.eos_token_id
)
extracted_text = self.tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
extracted_text = extracted_text.replace(prompt, "").strip()
return {
"success": True,
"extracted_text": extracted_text,
"grounding_info": target_text if target_text else "all_text",
"image_path": image_path,
"model_used": self.model_name
}
except Exception as e:
logger.error(f"Error in grounding extraction from {image_path}: {str(e)}")
return {
"success": False,
"error": str(e),
"image_path": image_path
}
def convert_to_markdown(self, image_path: str) -> Dict[str, Any]:
"""
Convert document image to markdown format
Args:
image_path (str): Path to the image file
Returns:
Dict containing markdown formatted text
"""
if self.model is None or self.tokenizer is None:
self.load_model()
try:
image = Image.open(image_path)
if image.mode != 'RGB':
image = image.convert('RGB')
prompt = "<|grounding|>Convert the document to markdown format."
inputs = self.tokenizer(
prompt,
image,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=1024,
do_sample=False,
temperature=0.1,
pad_token_id=self.tokenizer.eos_token_id
)
markdown_text = self.tokenizer.decode(
outputs[0],
skip_special_tokens=True
)
markdown_text = markdown_text.replace(prompt, "").strip()
return {
"success": True,
"markdown_text": markdown_text,
"image_path": image_path,
"model_used": self.model_name
}
except Exception as e:
logger.error(f"Error converting to markdown from {image_path}: {str(e)}")
return {
"success": False,
"error": str(e),
"image_path": image_path
}
# Global OCR service instance
ocr_service = DeepSeekOCRService()
def get_ocr_service() -> DeepSeekOCRService:
"""
Get the global OCR service instance
Returns:
DeepSeekOCRService: The OCR service instance
"""
return ocr_service