Spaces:
Runtime error
Runtime error
デコレータを最小スコープに
Browse files- app.py +0 -2
- scripts/process_utils.py +16 -9
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
import os
|
| 4 |
import io
|
| 5 |
from PIL import Image
|
|
@@ -23,7 +22,6 @@ def process_image(input_image, mode, weight1, weight2):
|
|
| 23 |
|
| 24 |
return sotai_pil, sketch_pil
|
| 25 |
|
| 26 |
-
@spaces.GPU
|
| 27 |
def gradio_process_image(input_image, mode, weight1, weight2):
|
| 28 |
sotai_image, sketch_image = process_image(input_image, mode, weight1, weight2)
|
| 29 |
return sotai_image, sketch_image
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
import io
|
| 4 |
from PIL import Image
|
|
|
|
| 22 |
|
| 23 |
return sotai_pil, sketch_pil
|
| 24 |
|
|
|
|
| 25 |
def gradio_process_image(input_image, mode, weight1, weight2):
|
| 26 |
sotai_image, sketch_image = process_image(input_image, mode, weight1, weight2)
|
| 27 |
return sotai_image, sketch_image
|
scripts/process_utils.py
CHANGED
|
@@ -14,6 +14,8 @@ from peft import PeftModel
|
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
from scripts.hf_utils import download_file
|
| 16 |
|
|
|
|
|
|
|
| 17 |
# グローバル変数
|
| 18 |
use_local = False
|
| 19 |
model = None
|
|
@@ -33,6 +35,7 @@ def ensure_rgb(image):
|
|
| 33 |
return image.convert('RGB')
|
| 34 |
return image
|
| 35 |
|
|
|
|
| 36 |
def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
|
| 37 |
if use_dotenv:
|
| 38 |
load_dotenv()
|
|
@@ -52,6 +55,7 @@ def load_lora(pipeline, lora_path, alpha=0.75):
|
|
| 52 |
pipeline.load_lora_weights(lora_path)
|
| 53 |
pipeline.fuse_lora(lora_scale=alpha)
|
| 54 |
|
|
|
|
| 55 |
def initialize_sotai_model():
|
| 56 |
global device, torch_dtype
|
| 57 |
|
|
@@ -65,19 +69,19 @@ def initialize_sotai_model():
|
|
| 65 |
sotai_sd_model_path,
|
| 66 |
torch_dtype=torch_dtype,
|
| 67 |
use_safetensors=True
|
| 68 |
-
)
|
| 69 |
|
| 70 |
# Load the ControlNet model
|
| 71 |
controlnet1 = ControlNetModel.from_single_file(
|
| 72 |
controlnet_path1,
|
| 73 |
torch_dtype=torch_dtype
|
| 74 |
-
)
|
| 75 |
|
| 76 |
# Load the ControlNet model
|
| 77 |
controlnet2 = ControlNetModel.from_single_file(
|
| 78 |
controlnet_path2,
|
| 79 |
torch_dtype=torch_dtype
|
| 80 |
-
)
|
| 81 |
|
| 82 |
# Create the ControlNet pipeline
|
| 83 |
sotai_gen_pipe = StableDiffusionControlNetPipeline(
|
|
@@ -89,7 +93,7 @@ def initialize_sotai_model():
|
|
| 89 |
safety_checker=sd_pipe.safety_checker,
|
| 90 |
feature_extractor=sd_pipe.feature_extractor,
|
| 91 |
controlnet=[controlnet1, controlnet2]
|
| 92 |
-
)
|
| 93 |
|
| 94 |
# LoRAの適用
|
| 95 |
lora_names = [
|
|
@@ -106,6 +110,7 @@ def initialize_sotai_model():
|
|
| 106 |
|
| 107 |
return sotai_gen_pipe
|
| 108 |
|
|
|
|
| 109 |
def initialize_refine_model():
|
| 110 |
global device, torch_dtype
|
| 111 |
|
|
@@ -119,23 +124,23 @@ def initialize_refine_model():
|
|
| 119 |
refine_sd_model_path,
|
| 120 |
torch_dtype=torch_dtype,
|
| 121 |
use_safetensors=True
|
| 122 |
-
)
|
| 123 |
|
| 124 |
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
|
| 125 |
controlnet1 = ControlNetModel.from_single_file(
|
| 126 |
controlnet_path3,
|
| 127 |
torch_dtype=torch_dtype
|
| 128 |
-
)
|
| 129 |
|
| 130 |
# Load the ControlNet model
|
| 131 |
controlnet2 = ControlNetModel.from_single_file(
|
| 132 |
controlnet_path4,
|
| 133 |
torch_dtype=torch_dtype
|
| 134 |
-
)
|
| 135 |
|
| 136 |
# Create the ControlNet pipeline
|
| 137 |
refine_gen_pipe = StableDiffusionControlNetPipeline(
|
| 138 |
-
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype),
|
| 139 |
text_encoder=sd_pipe.text_encoder,
|
| 140 |
tokenizer=sd_pipe.tokenizer,
|
| 141 |
unet=sd_pipe.unet,
|
|
@@ -143,7 +148,7 @@ def initialize_refine_model():
|
|
| 143 |
safety_checker=sd_pipe.safety_checker,
|
| 144 |
feature_extractor=sd_pipe.feature_extractor,
|
| 145 |
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定
|
| 146 |
-
)
|
| 147 |
|
| 148 |
# スケジューラーの設定
|
| 149 |
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)
|
|
@@ -201,6 +206,7 @@ def create_rgba_image(binary_image: np.ndarray, color: list) -> Image.Image:
|
|
| 201 |
rgba_image[:, :, 3] = binary_image
|
| 202 |
return Image.fromarray(rgba_image, 'RGBA')
|
| 203 |
|
|
|
|
| 204 |
def generate_sotai_image(input_image: Image.Image, output_width: int, output_height: int) -> Image.Image:
|
| 205 |
input_image = ensure_rgb(input_image)
|
| 206 |
global sotai_gen_pipe
|
|
@@ -245,6 +251,7 @@ def generate_sotai_image(input_image: Image.Image, output_width: int, output_hei
|
|
| 245 |
torch.cuda.empty_cache()
|
| 246 |
gc.collect()
|
| 247 |
|
|
|
|
| 248 |
def generate_refined_image(prompt: str, original_image: Image.Image, output_width: int, output_height: int, weight1: float, weight2: float) -> Image.Image:
|
| 249 |
original_image = ensure_rgb(original_image)
|
| 250 |
global refine_gen_pipe
|
|
|
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
from scripts.hf_utils import download_file
|
| 16 |
|
| 17 |
+
import spaces
|
| 18 |
+
|
| 19 |
# グローバル変数
|
| 20 |
use_local = False
|
| 21 |
model = None
|
|
|
|
| 35 |
return image.convert('RGB')
|
| 36 |
return image
|
| 37 |
|
| 38 |
+
@spaces.GPU
|
| 39 |
def initialize(_use_local=False, use_gpu=False, use_dotenv=False):
|
| 40 |
if use_dotenv:
|
| 41 |
load_dotenv()
|
|
|
|
| 55 |
pipeline.load_lora_weights(lora_path)
|
| 56 |
pipeline.fuse_lora(lora_scale=alpha)
|
| 57 |
|
| 58 |
+
@spaces.GPU
|
| 59 |
def initialize_sotai_model():
|
| 60 |
global device, torch_dtype
|
| 61 |
|
|
|
|
| 69 |
sotai_sd_model_path,
|
| 70 |
torch_dtype=torch_dtype,
|
| 71 |
use_safetensors=True
|
| 72 |
+
).to(device)
|
| 73 |
|
| 74 |
# Load the ControlNet model
|
| 75 |
controlnet1 = ControlNetModel.from_single_file(
|
| 76 |
controlnet_path1,
|
| 77 |
torch_dtype=torch_dtype
|
| 78 |
+
).to(device)
|
| 79 |
|
| 80 |
# Load the ControlNet model
|
| 81 |
controlnet2 = ControlNetModel.from_single_file(
|
| 82 |
controlnet_path2,
|
| 83 |
torch_dtype=torch_dtype
|
| 84 |
+
).to(device)
|
| 85 |
|
| 86 |
# Create the ControlNet pipeline
|
| 87 |
sotai_gen_pipe = StableDiffusionControlNetPipeline(
|
|
|
|
| 93 |
safety_checker=sd_pipe.safety_checker,
|
| 94 |
feature_extractor=sd_pipe.feature_extractor,
|
| 95 |
controlnet=[controlnet1, controlnet2]
|
| 96 |
+
).to(device)
|
| 97 |
|
| 98 |
# LoRAの適用
|
| 99 |
lora_names = [
|
|
|
|
| 110 |
|
| 111 |
return sotai_gen_pipe
|
| 112 |
|
| 113 |
+
@spaces.GPU
|
| 114 |
def initialize_refine_model():
|
| 115 |
global device, torch_dtype
|
| 116 |
|
|
|
|
| 124 |
refine_sd_model_path,
|
| 125 |
torch_dtype=torch_dtype,
|
| 126 |
use_safetensors=True
|
| 127 |
+
).to(device)
|
| 128 |
|
| 129 |
# controlnet_path = "models/cn/control_v11p_sd15_canny.pth"
|
| 130 |
controlnet1 = ControlNetModel.from_single_file(
|
| 131 |
controlnet_path3,
|
| 132 |
torch_dtype=torch_dtype
|
| 133 |
+
).to(device)
|
| 134 |
|
| 135 |
# Load the ControlNet model
|
| 136 |
controlnet2 = ControlNetModel.from_single_file(
|
| 137 |
controlnet_path4,
|
| 138 |
torch_dtype=torch_dtype
|
| 139 |
+
).to(device)
|
| 140 |
|
| 141 |
# Create the ControlNet pipeline
|
| 142 |
refine_gen_pipe = StableDiffusionControlNetPipeline(
|
| 143 |
+
vae=AutoencoderKL.from_single_file(vae_path, torch_dtype=torch_dtype).to(device),
|
| 144 |
text_encoder=sd_pipe.text_encoder,
|
| 145 |
tokenizer=sd_pipe.tokenizer,
|
| 146 |
unet=sd_pipe.unet,
|
|
|
|
| 148 |
safety_checker=sd_pipe.safety_checker,
|
| 149 |
feature_extractor=sd_pipe.feature_extractor,
|
| 150 |
controlnet=[controlnet1, controlnet2], # 複数のControlNetを指定
|
| 151 |
+
).to(device)
|
| 152 |
|
| 153 |
# スケジューラーの設定
|
| 154 |
refine_gen_pipe.scheduler = UniPCMultistepScheduler.from_config(refine_gen_pipe.scheduler.config)
|
|
|
|
| 206 |
rgba_image[:, :, 3] = binary_image
|
| 207 |
return Image.fromarray(rgba_image, 'RGBA')
|
| 208 |
|
| 209 |
+
@spaces.GPU
|
| 210 |
def generate_sotai_image(input_image: Image.Image, output_width: int, output_height: int) -> Image.Image:
|
| 211 |
input_image = ensure_rgb(input_image)
|
| 212 |
global sotai_gen_pipe
|
|
|
|
| 251 |
torch.cuda.empty_cache()
|
| 252 |
gc.collect()
|
| 253 |
|
| 254 |
+
@spaces.GPU
|
| 255 |
def generate_refined_image(prompt: str, original_image: Image.Image, output_width: int, output_height: int, weight1: float, weight2: float) -> Image.Image:
|
| 256 |
original_image = ensure_rgb(original_image)
|
| 257 |
global refine_gen_pipe
|