metadata
			tags:
  - image-feature-extraction
  - timm
  - transformers
pipeline_tag: image-feature-extraction
library_name: timm
license: other
license_name: dinov3-license
license_link: https://ai.meta.com/resources/models-and-libraries/dinov3-license
datasets:
  - lvd-1689m
	
		
	
	
		Model card for vit_small_plus_patch16_dinov3_qkvb.lvd1689m
	
A DINOv3 ViT model image feature encoder. Distilled on LVD-1689M from the DINOv3 ViT-7B model.
	
		
	
	
		Model Notes
	
- The original model weights ended up with all QKV projection biases being zeroes. For timm, have disabled the QKV bias (qkv_bias=False) for the models and not loaded the zero weights. For some model sizes there are variants withqkvbin the name that have the bias enabled (qkv_bias=True), but zero, to match the behaviour oftransformersand original models.
- The original models keep RoPE periods as a persistent bfloat16buffer.timmgeneratesfloat32periods at init. This results in some numerical differences, however thetimmapproach should be less problematic running on devices without bfloat16 support, and appears to work as well if not slightly better for fine-tuning.model.rope.periods = model.rope.periods.to(torch.bfloat16).to(torch.float32)will truncate the periods to bfloat16 and result in matching outputs.
	
		
	
	
		Model Details
	
	
		
	
	
		Model Usage
	
	
		
	
	
		Image Classification
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_small_plus_patch16_dinov3_qkvb.lvd1689m', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
	
	
		Feature Map Extraction
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'vit_small_plus_patch16_dinov3_qkvb.lvd1689m',
    pretrained=True,
    features_only=True,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
for o in output:
    
    
    
    
    
    print(o.shape)
	
		
	
	
		Image Embeddings
	
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
    'vit_small_plus_patch16_dinov3_qkvb.lvd1689m',
    pretrained=True,
    num_classes=0,  
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))  
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
	
		
	
	
		Model Comparison
	
See the associated paper for details on the evaluation protocols
	
		
	
	
		Results for ViT backbones pretrained (or distilled) on web (LVD-1689M)
	
	
		
| Model | IN-ReaL | IN-R | Obj.Net | Ox.-H | ADE20k | NYU↓ | DAVIS | NAVI | SPair | 
		
| Global Tasks |  |  |  |  | Dense Tasks |  |  |  |  | 
| DINOv3 ViT-S/16 | 87.0 | 60.4 | 50.9 | 49.5 | 47.0 | 0.403 | 72.7 | 56.3 | 50.4 | 
| DINOv3 ViT-S+/16 | 88.0 | 68.8 | 54.6 | 50.0 | 48.8 | 0.399 | 75.5 | 57.1 | 55.2 | 
| DINOv3 ViT-B/16 | 89.3 | 76.7 | 64.1 | 58.5 | 51.8 | 0.373 | 77.2 | 58.8 | 57.2 | 
| DINOv3 ViT-L/16 | 90.2 | 88.1 | 74.8 | 63.1 | 54.9 | 0.352 | 79.9 | 62.3 | 61.3 | 
| DINOv3 ViT-H+/16 | 90.3 | 90.0 | 78.6 | 64.5 | 54.8 | 0.352 | 79.3 | 63.3 | 56.3 | 
| DINOv3 ViT-7B/16 | 90.4 | 91.1 | 91.1 | 72.8 | 55.9 | 0.309 | 79.7 | 64.4 | 58.7 | 
	
 
	
		
	
	
		Results for ConvNeXt backbones distilled on web (LVD-1689M)
	
	
		
| Model | IN-ReaL @256px | IN-ReaL @512px | IN-R @256px | IN-R @512px | Obj.Net @256px | Obj.Net @512px | ADE20k | NYU↓ | 
		
| Global Tasks |  |  |  |  |  |  | Dense Tasks |  | 
| DINOv3 ConvNeXt Tiny | 86.6 | 87.7 | 73.7 | 74.1 | 52.6 | 58.7 | 42.7 | 0.448 | 
| DINOv3 ConvNeXt Small | 87.9 | 88.7 | 73.7 | 74.1 | 52.6 | 58.7 | 44.8 | 0.432 | 
| DINOv3 ConvNeXt Base | 88.5 | 89.2 | 77.2 | 78.2 | 56.2 | 61.3 | 46.3 | 0.420 | 
| DINOv3 ConvNeXt Large | 88.9 | 89.4 | 81.3 | 82.4 | 59.3 | 65.2 | 47.8 | 0.403 | 
	
 
	
		
	
	
		Results for ViT backbones pretrained (or distilled) on satellite (SAT-493M)
	
	
		
	
	
		(GEO-Bench) Classification
	
	
		
| Model | m-BEnet | m-brick-kiln | m-eurosat | m-forestnet | m-pv4ger | m-so2sat | mean | 
		
| DINOv3 ViT-L/16 | 73.0 | 96.5 | 94.1 | 60.6 | 96.0 | 57.4 | 79.6 | 
| DINOv3 ViT-7B/16 | 74.0 | 97.2 | 94.8 | 62.3 | 96.1 | 62.1 | 81.1 | 
	
 
	
		
	
	
		(GEO-Bench) Segmentation
	
	
		
| Model | m-cashew | m-chesapeake | m-NeonTree | m-nz-cattle | m-pv4ger-seg | m-SA-crop | mean | 
		
| DINOv3 ViT-L/16 | 94.2 | 75.6 | 61.8 | 83.7 | 95.2 | 36.8 | 74.5 | 
| DINOv3 ViT-7B/16 | 94.1 | 76.6 | 62.6 | 83.4 | 95.5 | 37.6 | 75.0 | 
	
 
	
		
	
	
		Citation
	
@article{simeoni2025dinov3,
  title={DINOv3},
  author={Sim{'e}oni, Oriane and Vo, Huy V and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{"e}l and others},
  journal={arXiv preprint arXiv:2508.10104},
  year={2025}
}
}
@article{dosovitskiy2020vit,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={ICLR},
  year={2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}