roberta2roberta-roberta-base-cnn-dailymail-seed42
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9434
- Rouge1: 0.4156
- Rouge2: 0.1935
- Rougel: 0.2864
- Rougelsum: 0.3925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|
| 3.7104 | 0.2229 | 2000 | 3.3305 | 0.2437 | 0.0462 | 0.1606 | 0.2276 |
| 3.0905 | 0.4458 | 4000 | 2.7549 | 0.3268 | 0.1007 | 0.2079 | 0.3065 |
| 2.69 | 0.6687 | 6000 | 2.4043 | 0.3811 | 0.1543 | 0.2483 | 0.3590 |
| 2.5072 | 0.8916 | 8000 | 2.2511 | 0.3927 | 0.1701 | 0.2614 | 0.3703 |
| 2.3162 | 1.1145 | 10000 | 2.1651 | 0.3982 | 0.1758 | 0.2682 | 0.3756 |
| 2.2608 | 1.3374 | 12000 | 2.1016 | 0.4019 | 0.1802 | 0.2717 | 0.3794 |
| 2.2161 | 1.5603 | 14000 | 2.0631 | 0.4082 | 0.1878 | 0.2789 | 0.3855 |
| 2.1959 | 1.7832 | 16000 | 2.0262 | 0.4073 | 0.1863 | 0.2794 | 0.3854 |
| 2.1558 | 2.0061 | 18000 | 2.0091 | 0.4111 | 0.1890 | 0.2815 | 0.3884 |
| 2.0484 | 2.2290 | 20000 | 1.9882 | 0.4130 | 0.1914 | 0.2836 | 0.3898 |
| 2.0264 | 2.4519 | 22000 | 1.9743 | 0.4143 | 0.1930 | 0.2857 | 0.3915 |
| 2.0051 | 2.6748 | 24000 | 1.9534 | 0.4140 | 0.1918 | 0.2848 | 0.3912 |
| 2.0068 | 2.8977 | 26000 | 1.9434 | 0.4156 | 0.1935 | 0.2864 | 0.3925 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support