Update cache format
#3
by
cyrilvallez
HF Staff
- opened
- custom_generate/generate.py +60 -176
custom_generate/generate.py
CHANGED
|
@@ -1,18 +1,22 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from transformers.generation.utils import (
|
| 5 |
-
|
| 6 |
-
GenerateNonBeamOutput,
|
| 7 |
GenerateDecoderOnlyOutput,
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
-
from transformers.cache_utils import Cache, EncoderDecoderCache, DynamicCache
|
| 10 |
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
|
| 11 |
-
from transformers.generation.utils import GenerateEncoderDecoderOutput, ALL_CACHE_NAMES
|
| 12 |
from transformers.utils import ModelOutput
|
| 13 |
-
|
| 14 |
-
import torch.nn as nn
|
| 15 |
-
import logging
|
| 16 |
|
| 17 |
if TYPE_CHECKING:
|
| 18 |
from transformers.generation.streamers import BaseStreamer
|
|
@@ -20,9 +24,7 @@ if TYPE_CHECKING:
|
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
|
| 23 |
-
def stack_model_outputs(
|
| 24 |
-
model_outputs: list[ModelOutput], config: PretrainedConfig
|
| 25 |
-
) -> ModelOutput:
|
| 26 |
"""
|
| 27 |
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
|
| 28 |
specific ModelOutput subclass from the list provided.
|
|
@@ -50,17 +52,11 @@ def stack_model_outputs(
|
|
| 50 |
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
|
| 51 |
if isinstance(data[0][0], tuple):
|
| 52 |
return tuple(
|
| 53 |
-
tuple(
|
| 54 |
-
torch.cat([attr[i][j] for attr in data], dim=0)
|
| 55 |
-
for j in range(len(data[0][0]))
|
| 56 |
-
)
|
| 57 |
for i in range(len(data[0]))
|
| 58 |
)
|
| 59 |
else:
|
| 60 |
-
return tuple(
|
| 61 |
-
torch.cat([attr[i] for attr in data], dim=0)
|
| 62 |
-
for i in range(len(data[0]))
|
| 63 |
-
)
|
| 64 |
elif isinstance(data[0], (int, float)):
|
| 65 |
# If the elements are integers or floats, return a tensor
|
| 66 |
return torch.tensor(data)
|
|
@@ -92,9 +88,7 @@ def _ranking_fast(
|
|
| 92 |
"""
|
| 93 |
norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
|
| 94 |
norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
|
| 95 |
-
cosine_matrix = torch.matmul(
|
| 96 |
-
norm_context_hidden, norm_next_hidden.transpose(1, 2)
|
| 97 |
-
).squeeze(-1) # [B*K, S]
|
| 98 |
|
| 99 |
# Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
|
| 100 |
# Using a large negative value for masked positions
|
|
@@ -105,9 +99,7 @@ def _ranking_fast(
|
|
| 105 |
degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K]
|
| 106 |
next_top_k_probs = next_top_k_probs.view(-1) # [B*K]
|
| 107 |
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
|
| 108 |
-
contrastive_score = torch.stack(
|
| 109 |
-
torch.split(contrastive_score, beam_width)
|
| 110 |
-
) # [B, K]
|
| 111 |
_, selected_idx = contrastive_score.max(dim=-1) # [B]
|
| 112 |
return selected_idx
|
| 113 |
|
|
@@ -163,9 +155,7 @@ def _contrastive_search(
|
|
| 163 |
f"contrastive search is not supported with stateful models, such as {model.__class__.__name__}"
|
| 164 |
)
|
| 165 |
# init values
|
| 166 |
-
has_eos_stopping_criteria = any(
|
| 167 |
-
hasattr(criteria, "eos_token_id") for criteria in stopping_criteria
|
| 168 |
-
)
|
| 169 |
top_k = generation_config.top_k
|
| 170 |
penalty_alpha = generation_config.penalty_alpha
|
| 171 |
pad_token_id = generation_config._pad_token_tensor
|
|
@@ -181,39 +171,22 @@ def _contrastive_search(
|
|
| 181 |
scores = () if (return_dict_in_generate and output_scores) else None
|
| 182 |
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 183 |
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 184 |
-
decoder_hidden_states = (
|
| 185 |
-
() if (return_dict_in_generate and output_hidden_states) else None
|
| 186 |
-
)
|
| 187 |
|
| 188 |
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 189 |
if return_dict_in_generate and model.config.is_encoder_decoder:
|
| 190 |
-
encoder_attentions = (
|
| 191 |
-
|
| 192 |
-
if output_attentions
|
| 193 |
-
else None
|
| 194 |
-
)
|
| 195 |
-
encoder_hidden_states = (
|
| 196 |
-
model_kwargs["encoder_outputs"].get("hidden_states")
|
| 197 |
-
if output_hidden_states
|
| 198 |
-
else None
|
| 199 |
-
)
|
| 200 |
|
| 201 |
# keep track of which sequences are already finished
|
| 202 |
batch_size, cur_len = input_ids.shape[:2]
|
| 203 |
-
unfinished_sequences = torch.ones(
|
| 204 |
-
|
| 205 |
-
)
|
| 206 |
-
model_kwargs = model._get_initial_cache_position(
|
| 207 |
-
cur_len, input_ids.device, model_kwargs
|
| 208 |
-
)
|
| 209 |
|
| 210 |
# Create cosine_matrix_mask based on the attention_mask
|
| 211 |
cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
|
| 212 |
if model.config.is_encoder_decoder:
|
| 213 |
-
if
|
| 214 |
-
"decoder_attention_mask" in model_kwargs
|
| 215 |
-
and model_kwargs["decoder_attention_mask"] is not None
|
| 216 |
-
):
|
| 217 |
cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
|
| 218 |
else:
|
| 219 |
cosine_matrix_mask = model_kwargs["attention_mask"]
|
|
@@ -221,9 +194,7 @@ def _contrastive_search(
|
|
| 221 |
|
| 222 |
this_peer_finished = False
|
| 223 |
|
| 224 |
-
while model._has_unfinished_sequences(
|
| 225 |
-
this_peer_finished, synced_gpus, device=input_ids.device
|
| 226 |
-
):
|
| 227 |
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
|
| 228 |
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
|
| 229 |
if model_kwargs.get("past_key_values") is None or (
|
|
@@ -232,9 +203,7 @@ def _contrastive_search(
|
|
| 232 |
):
|
| 233 |
# prepare inputs
|
| 234 |
model_kwargs["use_cache"] = True
|
| 235 |
-
model_inputs = model.prepare_inputs_for_generation(
|
| 236 |
-
input_ids, **model_kwargs
|
| 237 |
-
)
|
| 238 |
|
| 239 |
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
|
| 240 |
# the `encoder_outputs`
|
|
@@ -256,9 +225,7 @@ def _contrastive_search(
|
|
| 256 |
# Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
|
| 257 |
# (the clone itmodel is always small)
|
| 258 |
# torch.float32 is needed to retain precision for later logits manipulations
|
| 259 |
-
logit_for_next_step = outputs.logits[:, -1, :].to(
|
| 260 |
-
copy=True, dtype=torch.float32, device=input_ids.device
|
| 261 |
-
)
|
| 262 |
|
| 263 |
model_kwargs = model._update_model_kwargs_for_generation(
|
| 264 |
outputs,
|
|
@@ -282,13 +249,17 @@ def _contrastive_search(
|
|
| 282 |
f"{model.__class__.__name__} does not support caching and therefore **can't** be used "
|
| 283 |
"for contrastive search."
|
| 284 |
)
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
):
|
| 289 |
raise ValueError(
|
| 290 |
-
f"
|
| 291 |
-
"
|
| 292 |
)
|
| 293 |
|
| 294 |
# contrastive_search main logic start:
|
|
@@ -307,18 +278,14 @@ def _contrastive_search(
|
|
| 307 |
scores += (processed_logit_for_next_step,)
|
| 308 |
if output_attentions:
|
| 309 |
decoder_attentions += (
|
| 310 |
-
(outputs.decoder_attentions,)
|
| 311 |
-
if model.config.is_encoder_decoder
|
| 312 |
-
else (outputs.attentions,)
|
| 313 |
)
|
| 314 |
if model.config.is_encoder_decoder:
|
| 315 |
cross_attentions += (outputs.cross_attentions,)
|
| 316 |
|
| 317 |
if output_hidden_states:
|
| 318 |
decoder_hidden_states += (
|
| 319 |
-
(outputs.decoder_hidden_states,)
|
| 320 |
-
if model.config.is_encoder_decoder
|
| 321 |
-
else (outputs.hidden_states,)
|
| 322 |
)
|
| 323 |
|
| 324 |
# This is needed to properly delete outputs.logits which may be very large for this first iteration
|
|
@@ -327,33 +294,13 @@ def _contrastive_search(
|
|
| 327 |
|
| 328 |
if not sequential:
|
| 329 |
# Replicates the new past_key_values to match the `top_k` candidates
|
| 330 |
-
|
| 331 |
-
# If it is a static cache, modify it in-place layer after layer to save memory
|
| 332 |
-
if isinstance(past, DynamicCache) or (
|
| 333 |
-
isinstance(past, EncoderDecoderCache)
|
| 334 |
-
and isinstance(past.self_attention_cache, DynamicCache)
|
| 335 |
-
):
|
| 336 |
-
past.batch_repeat_interleave(top_k)
|
| 337 |
-
else:
|
| 338 |
-
new_key_values = []
|
| 339 |
-
for layer in past:
|
| 340 |
-
items = []
|
| 341 |
-
# item is either the key or the value matrix
|
| 342 |
-
for item in layer:
|
| 343 |
-
items.append(item.repeat_interleave(top_k, dim=0))
|
| 344 |
-
new_key_values.append(tuple(items))
|
| 345 |
-
|
| 346 |
-
past = tuple(new_key_values)
|
| 347 |
-
|
| 348 |
-
model_kwargs["past_key_values"] = past
|
| 349 |
|
| 350 |
if sequential:
|
| 351 |
all_outputs = []
|
| 352 |
for i in range(top_k):
|
| 353 |
# compute the candidate tokens by the language model and collect their hidden_states
|
| 354 |
-
next_model_inputs = model.prepare_inputs_for_generation(
|
| 355 |
-
top_k_ids[:, i].view(-1, 1), **model_kwargs
|
| 356 |
-
)
|
| 357 |
|
| 358 |
outputs = model(
|
| 359 |
**next_model_inputs,
|
|
@@ -361,21 +308,10 @@ def _contrastive_search(
|
|
| 361 |
output_hidden_states=True,
|
| 362 |
output_attentions=output_attentions,
|
| 363 |
)
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
)
|
| 369 |
-
):
|
| 370 |
-
# Remove past K-V from output since we don't need to stack later
|
| 371 |
-
outputs["past_key_values"] = None
|
| 372 |
-
# Remove last token from past K-V since we don't want to append it at this point
|
| 373 |
-
model_kwargs["past_key_values"].crop(-1)
|
| 374 |
-
else:
|
| 375 |
-
raise ValueError(
|
| 376 |
-
f"Unsupported cache type: {type(outputs['past_key_values'])}. Contrastive search requires "
|
| 377 |
-
"dynamic cache, so set `cache_implementation='dynamic'` in the generation config."
|
| 378 |
-
)
|
| 379 |
|
| 380 |
all_outputs.append(outputs)
|
| 381 |
outputs = stack_model_outputs(all_outputs, model.config.get_text_config())
|
|
@@ -383,9 +319,7 @@ def _contrastive_search(
|
|
| 383 |
else:
|
| 384 |
# compute the candidate tokens by the language model and collect their hidden_states
|
| 385 |
# assembles top_k_ids into batch of size k
|
| 386 |
-
next_model_inputs = model.prepare_inputs_for_generation(
|
| 387 |
-
top_k_ids.view(-1, 1), **model_kwargs
|
| 388 |
-
)
|
| 389 |
|
| 390 |
outputs = model(
|
| 391 |
**next_model_inputs,
|
|
@@ -431,9 +365,7 @@ def _contrastive_search(
|
|
| 431 |
selected_idx = selected_idx.to("cpu")
|
| 432 |
|
| 433 |
# This will be used instead of the previous inneficient torch.stack(torch.split())
|
| 434 |
-
augmented_idx = torch.tensor(
|
| 435 |
-
[x + i * top_k for i, x in enumerate(selected_idx)]
|
| 436 |
-
)
|
| 437 |
|
| 438 |
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
|
| 439 |
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
|
|
@@ -441,15 +373,11 @@ def _contrastive_search(
|
|
| 441 |
next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
|
| 442 |
next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
|
| 443 |
next_hidden = next_hidden[range(batch_size), selected_idx, :]
|
| 444 |
-
last_hidden_states = torch.cat(
|
| 445 |
-
[last_hidden_states, next_hidden.unsqueeze(1)], dim=1
|
| 446 |
-
)
|
| 447 |
|
| 448 |
next_decoder_hidden_states = ()
|
| 449 |
for layer in full_hidden_states:
|
| 450 |
-
layer = torch.stack(torch.split(layer, top_k))[
|
| 451 |
-
range(batch_size), selected_idx, :
|
| 452 |
-
]
|
| 453 |
next_decoder_hidden_states += (layer,)
|
| 454 |
|
| 455 |
# generate past_key_values cache of only the selected token
|
|
@@ -469,29 +397,10 @@ def _contrastive_search(
|
|
| 469 |
else:
|
| 470 |
next_past_key_values = None
|
| 471 |
for possible_cache_name in ALL_CACHE_NAMES:
|
| 472 |
-
next_past_key_values = next_past_key_values or getattr(
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
if isinstance(next_past_key_values, DynamicCache) or (
|
| 477 |
-
isinstance(next_past_key_values, EncoderDecoderCache)
|
| 478 |
-
and isinstance(next_past_key_values.self_attention_cache, DynamicCache)
|
| 479 |
-
):
|
| 480 |
-
next_past_key_values.batch_select_indices(augmented_idx)
|
| 481 |
-
else:
|
| 482 |
-
new_key_values = []
|
| 483 |
-
for layer in next_past_key_values:
|
| 484 |
-
items = []
|
| 485 |
-
# item is either the key or the value matrix
|
| 486 |
-
for item in layer:
|
| 487 |
-
items.append(item[augmented_idx, ...])
|
| 488 |
-
new_key_values.append(tuple(items))
|
| 489 |
-
|
| 490 |
-
next_past_key_values = tuple(new_key_values)
|
| 491 |
-
|
| 492 |
-
logit_for_next_step = torch.stack(torch.split(logits, top_k))[
|
| 493 |
-
range(batch_size), selected_idx, :
|
| 494 |
-
]
|
| 495 |
logit_for_next_step = logit_for_next_step.to(input_ids.device)
|
| 496 |
|
| 497 |
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
|
|
@@ -500,14 +409,10 @@ def _contrastive_search(
|
|
| 500 |
next_step_decoder_attentions = ()
|
| 501 |
if output_attentions:
|
| 502 |
for layer in outputs.cross_attentions:
|
| 503 |
-
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
| 504 |
-
range(batch_size), selected_idx, ...
|
| 505 |
-
]
|
| 506 |
next_step_cross_attentions += (layer,)
|
| 507 |
for layer in outputs.decoder_attentions:
|
| 508 |
-
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
| 509 |
-
range(batch_size), selected_idx, ...
|
| 510 |
-
]
|
| 511 |
next_step_decoder_attentions += (layer,)
|
| 512 |
outputs = Seq2SeqLMOutput(
|
| 513 |
past_key_values=next_past_key_values,
|
|
@@ -519,9 +424,7 @@ def _contrastive_search(
|
|
| 519 |
next_step_attentions = ()
|
| 520 |
if output_attentions:
|
| 521 |
for layer in outputs.attentions:
|
| 522 |
-
layer = torch.stack(torch.split(layer, top_k, dim=0))[
|
| 523 |
-
range(batch_size), selected_idx, ...
|
| 524 |
-
]
|
| 525 |
next_step_attentions += (layer,)
|
| 526 |
outputs = CausalLMOutputWithPast(
|
| 527 |
past_key_values=next_past_key_values,
|
|
@@ -541,9 +444,7 @@ def _contrastive_search(
|
|
| 541 |
|
| 542 |
# finished sentences should have their next token be a padding token
|
| 543 |
if has_eos_stopping_criteria:
|
| 544 |
-
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
| 545 |
-
1 - unfinished_sequences
|
| 546 |
-
)
|
| 547 |
|
| 548 |
# update generated ids, model inputs, and length for next step
|
| 549 |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
@@ -551,9 +452,7 @@ def _contrastive_search(
|
|
| 551 |
streamer.put(next_tokens.cpu())
|
| 552 |
|
| 553 |
# stop when each sentence is finished
|
| 554 |
-
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
| 555 |
-
input_ids, scores
|
| 556 |
-
)
|
| 557 |
this_peer_finished = unfinished_sequences.max() == 0
|
| 558 |
|
| 559 |
if streamer is not None:
|
|
@@ -563,21 +462,7 @@ def _contrastive_search(
|
|
| 563 |
# Contrastive search works by forward looking at the next token, so we need to exclude it from
|
| 564 |
# `past_key_values` to be consistent with the other decoding methods
|
| 565 |
if model_kwargs.get("past_key_values") is not None:
|
| 566 |
-
|
| 567 |
-
isinstance(model_kwargs["past_key_values"], EncoderDecoderCache)
|
| 568 |
-
and isinstance(
|
| 569 |
-
model_kwargs["past_key_values"].self_attention_cache, DynamicCache
|
| 570 |
-
)
|
| 571 |
-
):
|
| 572 |
-
model_kwargs["past_key_values"].crop(-1)
|
| 573 |
-
else:
|
| 574 |
-
past_key_values = []
|
| 575 |
-
for layer in model_kwargs["past_key_values"]:
|
| 576 |
-
layer_past_key_values = []
|
| 577 |
-
for item in layer:
|
| 578 |
-
layer_past_key_values.append(item[..., :-1, :])
|
| 579 |
-
past_key_values.append(tuple(layer_past_key_values))
|
| 580 |
-
model_kwargs["past_key_values"] = tuple(past_key_values)
|
| 581 |
|
| 582 |
if model.config.is_encoder_decoder:
|
| 583 |
return GenerateEncoderDecoderOutput(
|
|
@@ -614,8 +499,7 @@ def generate(model, *args, **kwargs):
|
|
| 614 |
"""
|
| 615 |
cache_implementation = kwargs.pop("cache_implementation", "dynamic_full")
|
| 616 |
if cache_implementation != "dynamic_full" and (
|
| 617 |
-
"sliding_attention"
|
| 618 |
-
in getattr(model.config.get_text_config(), "layer_types", [])
|
| 619 |
or getattr(model.config.get_text_config(), "sliding_window", 0) > 0
|
| 620 |
):
|
| 621 |
logger.warning_once(
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import TYPE_CHECKING, Optional, Union
|
| 3 |
+
|
| 4 |
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
|
| 8 |
+
from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache
|
| 9 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 10 |
from transformers.generation.utils import (
|
| 11 |
+
ALL_CACHE_NAMES,
|
|
|
|
| 12 |
GenerateDecoderOnlyOutput,
|
| 13 |
+
GenerateEncoderDecoderOutput,
|
| 14 |
+
GenerateNonBeamOutput,
|
| 15 |
+
GenerationMixin,
|
| 16 |
)
|
|
|
|
| 17 |
from transformers.modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
|
|
|
|
| 18 |
from transformers.utils import ModelOutput
|
| 19 |
+
|
|
|
|
|
|
|
| 20 |
|
| 21 |
if TYPE_CHECKING:
|
| 22 |
from transformers.generation.streamers import BaseStreamer
|
|
|
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
|
| 27 |
+
def stack_model_outputs(model_outputs: list[ModelOutput], config: PretrainedConfig) -> ModelOutput:
|
|
|
|
|
|
|
| 28 |
"""
|
| 29 |
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
|
| 30 |
specific ModelOutput subclass from the list provided.
|
|
|
|
| 52 |
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
|
| 53 |
if isinstance(data[0][0], tuple):
|
| 54 |
return tuple(
|
| 55 |
+
tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
|
|
|
|
|
|
|
|
|
|
| 56 |
for i in range(len(data[0]))
|
| 57 |
)
|
| 58 |
else:
|
| 59 |
+
return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
|
|
|
|
|
|
|
|
|
|
| 60 |
elif isinstance(data[0], (int, float)):
|
| 61 |
# If the elements are integers or floats, return a tensor
|
| 62 |
return torch.tensor(data)
|
|
|
|
| 88 |
"""
|
| 89 |
norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
|
| 90 |
norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
|
| 91 |
+
cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1) # [B*K, S]
|
|
|
|
|
|
|
| 92 |
|
| 93 |
# Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
|
| 94 |
# Using a large negative value for masked positions
|
|
|
|
| 99 |
degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K]
|
| 100 |
next_top_k_probs = next_top_k_probs.view(-1) # [B*K]
|
| 101 |
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
|
| 102 |
+
contrastive_score = torch.stack(torch.split(contrastive_score, beam_width)) # [B, K]
|
|
|
|
|
|
|
| 103 |
_, selected_idx = contrastive_score.max(dim=-1) # [B]
|
| 104 |
return selected_idx
|
| 105 |
|
|
|
|
| 155 |
f"contrastive search is not supported with stateful models, such as {model.__class__.__name__}"
|
| 156 |
)
|
| 157 |
# init values
|
| 158 |
+
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
|
|
|
|
|
|
|
| 159 |
top_k = generation_config.top_k
|
| 160 |
penalty_alpha = generation_config.penalty_alpha
|
| 161 |
pad_token_id = generation_config._pad_token_tensor
|
|
|
|
| 171 |
scores = () if (return_dict_in_generate and output_scores) else None
|
| 172 |
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 173 |
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 174 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
|
|
|
|
|
|
| 175 |
|
| 176 |
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 177 |
if return_dict_in_generate and model.config.is_encoder_decoder:
|
| 178 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
| 179 |
+
encoder_hidden_states = model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
# keep track of which sequences are already finished
|
| 182 |
batch_size, cur_len = input_ids.shape[:2]
|
| 183 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
| 184 |
+
model_kwargs = model._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
# Create cosine_matrix_mask based on the attention_mask
|
| 187 |
cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
|
| 188 |
if model.config.is_encoder_decoder:
|
| 189 |
+
if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None:
|
|
|
|
|
|
|
|
|
|
| 190 |
cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
|
| 191 |
else:
|
| 192 |
cosine_matrix_mask = model_kwargs["attention_mask"]
|
|
|
|
| 194 |
|
| 195 |
this_peer_finished = False
|
| 196 |
|
| 197 |
+
while model._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
|
|
|
|
|
|
| 198 |
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
|
| 199 |
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
|
| 200 |
if model_kwargs.get("past_key_values") is None or (
|
|
|
|
| 203 |
):
|
| 204 |
# prepare inputs
|
| 205 |
model_kwargs["use_cache"] = True
|
| 206 |
+
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
|
|
|
|
|
|
| 207 |
|
| 208 |
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
|
| 209 |
# the `encoder_outputs`
|
|
|
|
| 225 |
# Copy is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
|
| 226 |
# (the clone itmodel is always small)
|
| 227 |
# torch.float32 is needed to retain precision for later logits manipulations
|
| 228 |
+
logit_for_next_step = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
|
|
|
|
|
|
|
| 229 |
|
| 230 |
model_kwargs = model._update_model_kwargs_for_generation(
|
| 231 |
outputs,
|
|
|
|
| 249 |
f"{model.__class__.__name__} does not support caching and therefore **can't** be used "
|
| 250 |
"for contrastive search."
|
| 251 |
)
|
| 252 |
+
# Only those caches have the necesary methods
|
| 253 |
+
elif not (
|
| 254 |
+
isinstance(past_key_values, DynamicCache)
|
| 255 |
+
or (
|
| 256 |
+
isinstance(past_key_values, EncoderDecoderCache)
|
| 257 |
+
and isinstance(past_key_values.self_attention_cache, DynamicCache)
|
| 258 |
+
)
|
| 259 |
):
|
| 260 |
raise ValueError(
|
| 261 |
+
f"Unsupported cache type: {type(outputs['past_key_values'])}. Contrastive search requires "
|
| 262 |
+
"dynamic cache, so set `cache_implementation='dynamic'` in the generation config."
|
| 263 |
)
|
| 264 |
|
| 265 |
# contrastive_search main logic start:
|
|
|
|
| 278 |
scores += (processed_logit_for_next_step,)
|
| 279 |
if output_attentions:
|
| 280 |
decoder_attentions += (
|
| 281 |
+
(outputs.decoder_attentions,) if model.config.is_encoder_decoder else (outputs.attentions,)
|
|
|
|
|
|
|
| 282 |
)
|
| 283 |
if model.config.is_encoder_decoder:
|
| 284 |
cross_attentions += (outputs.cross_attentions,)
|
| 285 |
|
| 286 |
if output_hidden_states:
|
| 287 |
decoder_hidden_states += (
|
| 288 |
+
(outputs.decoder_hidden_states,) if model.config.is_encoder_decoder else (outputs.hidden_states,)
|
|
|
|
|
|
|
| 289 |
)
|
| 290 |
|
| 291 |
# This is needed to properly delete outputs.logits which may be very large for this first iteration
|
|
|
|
| 294 |
|
| 295 |
if not sequential:
|
| 296 |
# Replicates the new past_key_values to match the `top_k` candidates
|
| 297 |
+
model_kwargs["past_key_values"].batch_repeat_interleave(top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
|
| 299 |
if sequential:
|
| 300 |
all_outputs = []
|
| 301 |
for i in range(top_k):
|
| 302 |
# compute the candidate tokens by the language model and collect their hidden_states
|
| 303 |
+
next_model_inputs = model.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)
|
|
|
|
|
|
|
| 304 |
|
| 305 |
outputs = model(
|
| 306 |
**next_model_inputs,
|
|
|
|
| 308 |
output_hidden_states=True,
|
| 309 |
output_attentions=output_attentions,
|
| 310 |
)
|
| 311 |
+
# Remove past K-V from output since we don't need to stack later
|
| 312 |
+
outputs["past_key_values"] = None
|
| 313 |
+
# Remove last token from past K-V since we don't want to append it at this point
|
| 314 |
+
model_kwargs["past_key_values"].crop(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
all_outputs.append(outputs)
|
| 317 |
outputs = stack_model_outputs(all_outputs, model.config.get_text_config())
|
|
|
|
| 319 |
else:
|
| 320 |
# compute the candidate tokens by the language model and collect their hidden_states
|
| 321 |
# assembles top_k_ids into batch of size k
|
| 322 |
+
next_model_inputs = model.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)
|
|
|
|
|
|
|
| 323 |
|
| 324 |
outputs = model(
|
| 325 |
**next_model_inputs,
|
|
|
|
| 365 |
selected_idx = selected_idx.to("cpu")
|
| 366 |
|
| 367 |
# This will be used instead of the previous inneficient torch.stack(torch.split())
|
| 368 |
+
augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)])
|
|
|
|
|
|
|
| 369 |
|
| 370 |
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
|
| 371 |
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
|
|
|
|
| 373 |
next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
|
| 374 |
next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
|
| 375 |
next_hidden = next_hidden[range(batch_size), selected_idx, :]
|
| 376 |
+
last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)
|
|
|
|
|
|
|
| 377 |
|
| 378 |
next_decoder_hidden_states = ()
|
| 379 |
for layer in full_hidden_states:
|
| 380 |
+
layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
|
|
|
|
|
|
|
| 381 |
next_decoder_hidden_states += (layer,)
|
| 382 |
|
| 383 |
# generate past_key_values cache of only the selected token
|
|
|
|
| 397 |
else:
|
| 398 |
next_past_key_values = None
|
| 399 |
for possible_cache_name in ALL_CACHE_NAMES:
|
| 400 |
+
next_past_key_values = next_past_key_values or getattr(outputs, possible_cache_name, None)
|
| 401 |
+
next_past_key_values.batch_select_indices(augmented_idx)
|
| 402 |
+
|
| 403 |
+
logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
logit_for_next_step = logit_for_next_step.to(input_ids.device)
|
| 405 |
|
| 406 |
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
|
|
|
|
| 409 |
next_step_decoder_attentions = ()
|
| 410 |
if output_attentions:
|
| 411 |
for layer in outputs.cross_attentions:
|
| 412 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
|
|
|
|
|
|
|
| 413 |
next_step_cross_attentions += (layer,)
|
| 414 |
for layer in outputs.decoder_attentions:
|
| 415 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
|
|
|
|
|
|
|
| 416 |
next_step_decoder_attentions += (layer,)
|
| 417 |
outputs = Seq2SeqLMOutput(
|
| 418 |
past_key_values=next_past_key_values,
|
|
|
|
| 424 |
next_step_attentions = ()
|
| 425 |
if output_attentions:
|
| 426 |
for layer in outputs.attentions:
|
| 427 |
+
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
|
|
|
|
|
|
|
| 428 |
next_step_attentions += (layer,)
|
| 429 |
outputs = CausalLMOutputWithPast(
|
| 430 |
past_key_values=next_past_key_values,
|
|
|
|
| 444 |
|
| 445 |
# finished sentences should have their next token be a padding token
|
| 446 |
if has_eos_stopping_criteria:
|
| 447 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
|
|
|
|
|
|
| 448 |
|
| 449 |
# update generated ids, model inputs, and length for next step
|
| 450 |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
|
|
| 452 |
streamer.put(next_tokens.cpu())
|
| 453 |
|
| 454 |
# stop when each sentence is finished
|
| 455 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
|
|
|
|
|
|
|
| 456 |
this_peer_finished = unfinished_sequences.max() == 0
|
| 457 |
|
| 458 |
if streamer is not None:
|
|
|
|
| 462 |
# Contrastive search works by forward looking at the next token, so we need to exclude it from
|
| 463 |
# `past_key_values` to be consistent with the other decoding methods
|
| 464 |
if model_kwargs.get("past_key_values") is not None:
|
| 465 |
+
model_kwargs["past_key_values"].crop(-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
if model.config.is_encoder_decoder:
|
| 468 |
return GenerateEncoderDecoderOutput(
|
|
|
|
| 499 |
"""
|
| 500 |
cache_implementation = kwargs.pop("cache_implementation", "dynamic_full")
|
| 501 |
if cache_implementation != "dynamic_full" and (
|
| 502 |
+
"sliding_attention" in getattr(model.config.get_text_config(), "layer_types", [])
|
|
|
|
| 503 |
or getattr(model.config.get_text_config(), "sliding_window", 0) > 0
|
| 504 |
):
|
| 505 |
logger.warning_once(
|