summarizer
Fine-tuned Gemma-3-270M for task summarization and branch naming
Model Details
- Base Model: google/gemma-3-270m-it
- Format: GGUF (quantized for efficient inference)
- Quantization: Q4_K_M
- Use Case: Generating concise task titles and git branch names
Training
- Training Run: https://wandb.ai/vanpelt/summarizer/runs/0t4lcgpb
Usage
With Ollama
ollama pull hf.co/vanpelt/summarizer
ollama run hf.co/vanpelt/summarizer
With llama.cpp
# Download the GGUF file
huggingface-cli download vanpelt/summarizer gemma3-270m-summarizer-Q4_K_M.gguf
# Run with llama.cpp
./main -m gemma3-270m-summarizer-Q4_K_M.gguf -p 'Your prompt here'
Files
tokenizer.json(31.8 MB)tokenizer_config.json(1.1 MB)added_tokens.json(0.0 MB)chat_template.jinja(0.0 MB)Modelfile(0.0 MB)template(0.0 MB)system(0.0 MB)model.safetensors(511.4 MB)gemma3-270m-summarizer-Q4_K_M.gguf(241.4 MB)special_tokens_map.json(0.0 MB)config.json(0.0 MB)params(0.0 MB)tokenizer.model(4.5 MB)
- Downloads last month
- 34
Hardware compatibility
Log In
to view the estimation
4-bit