metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:9020
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: python multiprocessing show cpu count
sentences:
- |-
def unique(seq):
"""Return the unique elements of a collection even if those elements are
unhashable and unsortable, like dicts and sets"""
cleaned = []
for each in seq:
if each not in cleaned:
cleaned.append(each)
return cleaned
- |-
def is_in(self, point_x, point_y):
""" Test if a point is within this polygonal region """
point_array = array(((point_x, point_y),))
vertices = array(self.points)
winding = self.inside_rule == "winding"
result = points_in_polygon(point_array, vertices, winding)
return result[0]
- |-
def machine_info():
"""Retrieve core and memory information for the current machine.
"""
import psutil
BYTES_IN_GIG = 1073741824.0
free_bytes = psutil.virtual_memory().total
return [{"memory": float("%.1f" % (free_bytes / BYTES_IN_GIG)), "cores": multiprocessing.cpu_count(),
"name": socket.gethostname()}]
- source_sentence: python subplot set the whole title
sentences:
- |-
def set_title(self, title, **kwargs):
"""Sets the title on the underlying matplotlib AxesSubplot."""
ax = self.get_axes()
ax.set_title(title, **kwargs)
- |-
def moving_average(array, n=3):
"""
Calculates the moving average of an array.
Parameters
----------
array : array
The array to have the moving average taken of
n : int
The number of points of moving average to take
Returns
-------
MovingAverageArray : array
The n-point moving average of the input array
"""
ret = _np.cumsum(array, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
- |-
def to_query_parameters(parameters):
"""Converts DB-API parameter values into query parameters.
:type parameters: Mapping[str, Any] or Sequence[Any]
:param parameters: A dictionary or sequence of query parameter values.
:rtype: List[google.cloud.bigquery.query._AbstractQueryParameter]
:returns: A list of query parameters.
"""
if parameters is None:
return []
if isinstance(parameters, collections_abc.Mapping):
return to_query_parameters_dict(parameters)
return to_query_parameters_list(parameters)
- source_sentence: python merge two set to dict
sentences:
- |-
def make_regex(separator):
"""Utility function to create regexp for matching escaped separators
in strings.
"""
return re.compile(r'(?:' + re.escape(separator) + r')?((?:[^' +
re.escape(separator) + r'\\]|\\.)+)')
- |-
def csvtolist(inputstr):
""" converts a csv string into a list """
reader = csv.reader([inputstr], skipinitialspace=True)
output = []
for r in reader:
output += r
return output
- |-
def dict_merge(set1, set2):
"""Joins two dictionaries."""
return dict(list(set1.items()) + list(set2.items()))
- source_sentence: python string % substitution float
sentences:
- |-
def _configure_logger():
"""Configure the logging module."""
if not app.debug:
_configure_logger_for_production(logging.getLogger())
elif not app.testing:
_configure_logger_for_debugging(logging.getLogger())
- |-
def __set__(self, instance, value):
""" Set a related object for an instance. """
self.map[id(instance)] = (weakref.ref(instance), value)
- |-
def format_float(value): # not used
"""Modified form of the 'g' format specifier.
"""
string = "{:g}".format(value).replace("e+", "e")
string = re.sub("e(-?)0*(\d+)", r"e\1\2", string)
return string
- source_sentence: bottom 5 rows in python
sentences:
- "def refresh(self, document):\n\t\t\"\"\" Load a new copy of a document from the database. does not\n\t\t\treplace the old one \"\"\"\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj"
- |-
def table_top_abs(self):
"""Returns the absolute position of table top"""
table_height = np.array([0, 0, self.table_full_size[2]])
return string_to_array(self.floor.get("pos")) + table_height
- |-
def get_dimension_array(array):
"""
Get dimension of an array getting the number of rows and the max num of
columns.
"""
if all(isinstance(el, list) for el in array):
result = [len(array), len(max([x for x in array], key=len,))]
# elif array and isinstance(array, list):
else:
result = [len(array), 1]
return result
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Devy1/MiniLM-cosqa-512")
# Run inference
sentences = [
'bottom 5 rows in python',
'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.4537, -0.0817],
# [ 0.4537, 1.0000, -0.0463],
# [-0.0817, -0.0463, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,020 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 6 tokens
- mean: 9.67 tokens
- max: 21 tokens
- min: 40 tokens
- mean: 86.17 tokens
- max: 256 tokens
- Samples:
anchor positive 1d array in char datatype in pythondef _convert_to_array(array_like, dtype):
"""
Convert Matrix attributes which are array-like or buffer to array.
"""
if isinstance(array_like, bytes):
return np.frombuffer(array_like, dtype=dtype)
return np.asarray(array_like, dtype=dtype)python condition non nonedef _not(condition=None, **kwargs):
"""
Return the opposite of input condition.
:param condition: condition to process.
:result: not condition.
:rtype: bool
"""
result = True
if condition is not None:
result = not run(condition, **kwargs)
return resultaccessing a column from a matrix in pythondef get_column(self, X, column):
"""Return a column of the given matrix.
Args:
X:numpy.ndarrayorpandas.DataFrame.
column:intorstr.
Returns:
np.ndarray: Selected column.
"""
if isinstance(X, pd.DataFrame):
return X[column].values
return X[:, column] - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 512fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0556 | 1 | 1.2259 |
| 0.1111 | 2 | 1.1589 |
| 0.1667 | 3 | 0.9588 |
| 0.2222 | 4 | 1.0265 |
| 0.2778 | 5 | 0.9783 |
| 0.3333 | 6 | 0.9464 |
| 0.3889 | 7 | 0.9527 |
| 0.4444 | 8 | 0.969 |
| 0.5 | 9 | 1.0237 |
| 0.5556 | 10 | 1.0134 |
| 0.6111 | 11 | 0.9297 |
| 0.6667 | 12 | 0.9877 |
| 0.7222 | 13 | 0.9531 |
| 0.7778 | 14 | 0.9156 |
| 0.8333 | 15 | 0.8613 |
| 0.8889 | 16 | 0.83 |
| 0.9444 | 17 | 0.8991 |
| 1.0 | 18 | 0.6764 |
| 1.0556 | 19 | 0.8545 |
| 1.1111 | 20 | 0.7454 |
| 1.1667 | 21 | 0.834 |
| 1.2222 | 22 | 0.7625 |
| 1.2778 | 23 | 0.7808 |
| 1.3333 | 24 | 0.817 |
| 1.3889 | 25 | 0.8032 |
| 1.4444 | 26 | 0.7854 |
| 1.5 | 27 | 0.7376 |
| 1.5556 | 28 | 0.8346 |
| 1.6111 | 29 | 0.8738 |
| 1.6667 | 30 | 0.7524 |
| 1.7222 | 31 | 0.72 |
| 1.7778 | 32 | 0.711 |
| 1.8333 | 33 | 0.7498 |
| 1.8889 | 34 | 0.7597 |
| 1.9444 | 35 | 0.7883 |
| 2.0 | 36 | 0.5038 |
| 2.0556 | 37 | 0.6932 |
| 2.1111 | 38 | 0.7273 |
| 2.1667 | 39 | 0.6723 |
| 2.2222 | 40 | 0.7059 |
| 2.2778 | 41 | 0.6159 |
| 2.3333 | 42 | 0.809 |
| 2.3889 | 43 | 0.6959 |
| 2.4444 | 44 | 0.7881 |
| 2.5 | 45 | 0.6861 |
| 2.5556 | 46 | 0.6545 |
| 2.6111 | 47 | 0.7235 |
| 2.6667 | 48 | 0.7031 |
| 2.7222 | 49 | 0.6679 |
| 2.7778 | 50 | 0.6835 |
| 2.8333 | 51 | 0.6773 |
| 2.8889 | 52 | 0.6972 |
| 2.9444 | 53 | 0.7043 |
| 3.0 | 54 | 0.4647 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}