|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Maincoder model implementation.""" |
|
|
|
|
|
from typing import Callable, Optional, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.masking_utils import create_causal_mask |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging |
|
|
|
|
|
from .configuration_maincoder import MaincoderConfig |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class MaincoderRMSNorm(nn.Module): |
|
|
"""RMSNorm implementation equivalent to T5LayerNorm.""" |
|
|
|
|
|
def __init__(self, hidden_size, eps=1e-5): |
|
|
""" |
|
|
MatildaPlusRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.eps = eps |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
|
|
|
def _norm(self, x): |
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
def forward(self, x): |
|
|
output = self._norm(x.float()).type_as(x) |
|
|
return output * self.weight |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
|
|
|
|
|
class MaincoderMLP(nn.Module): |
|
|
"""SwiGLU-style MLP.""" |
|
|
|
|
|
def __init__(self, config: MaincoderConfig): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size_mlp |
|
|
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
|
class MaincoderRotaryEmbedding(nn.Module): |
|
|
"""Rotary Position Embedding.""" |
|
|
|
|
|
def __init__(self, config: MaincoderConfig, device=None): |
|
|
super().__init__() |
|
|
self.rope_type = "llama3" if config.rope_scaling is not None else "default" |
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor: |
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2) |
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
|
freqs_cis = freqs_cis * self.attention_scaling |
|
|
|
|
|
return freqs_cis |
|
|
|
|
|
|
|
|
def apply_rotary_emb( |
|
|
xq: torch.Tensor, |
|
|
xk: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Apply rotary embeddings to query and key tensors.""" |
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
|
|
|
|
|
|
|
freqs_cis = freqs_cis[:, :, None, :] |
|
|
|
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
|
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
"""Repeat key/value heads to match query heads for GQA.""" |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
batch, num_kv_heads, slen, head_dim = hidden_states.shape |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_kv_heads, n_rep, slen, head_dim) |
|
|
return hidden_states.reshape(batch, num_kv_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Eager attention implementation.""" |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
|
|
|
if attention_mask is not None: |
|
|
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class MaincoderAttention(nn.Module): |
|
|
"""Multi-headed attention with Grouped Query Attention (GQA) and RoPE.""" |
|
|
|
|
|
def __init__(self, config: MaincoderConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.layer_idx = layer_idx |
|
|
self.head_dim = config.head_dim |
|
|
self.num_attention_heads = config.num_attention_heads |
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
|
|
|
self.q_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False) |
|
|
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
|
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
|
|
|
|
|
if config.use_qk_norm: |
|
|
self.q_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
self.k_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
|
batch_size, seq_len, _ = hidden_states.shape |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_attention_heads, self.head_dim) |
|
|
key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim) |
|
|
value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim) |
|
|
|
|
|
|
|
|
query_states, key_states = apply_rotary_emb(query_states, key_states, position_embeddings) |
|
|
|
|
|
|
|
|
if hasattr(self, "q_norm"): |
|
|
query_states = self.q_norm(query_states) |
|
|
key_states = self.k_norm(key_states) |
|
|
|
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
|
key_states = key_states.transpose(1, 2) |
|
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
|
|
|
if past_key_values is not None: |
|
|
cache_kwargs = {"cache_position": cache_position} |
|
|
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
|
|
|
attention_fn: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_fn = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_fn( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(batch_size, seq_len, -1) |
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class MaincoderDecoderLayer(GradientCheckpointingLayer): |
|
|
"""Transformer decoder layer with pre-norm architecture.""" |
|
|
|
|
|
def __init__(self, config: MaincoderConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.self_attn = MaincoderAttention(config, layer_idx) |
|
|
self.feed_forward = MaincoderMLP(config) |
|
|
self.input_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_embeddings: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> torch.Tensor: |
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
position_embeddings=position_embeddings, |
|
|
attention_mask=attention_mask, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.feed_forward(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class MaincoderPreTrainedModel(PreTrainedModel): |
|
|
"""Base class for Maincoder models.""" |
|
|
|
|
|
config_class = MaincoderConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["MaincoderDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
|
|
|
def _init_weights(self, module: nn.Module): |
|
|
std = self.config.initializer_range |
|
|
if isinstance(module, nn.Linear): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.bias is not None: |
|
|
module.bias.data.zero_() |
|
|
elif isinstance(module, nn.Embedding): |
|
|
module.weight.data.normal_(mean=0.0, std=std) |
|
|
if module.padding_idx is not None: |
|
|
module.weight.data[module.padding_idx].zero_() |
|
|
elif isinstance(module, MaincoderRMSNorm): |
|
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class MaincoderModel(MaincoderPreTrainedModel): |
|
|
"""Maincoder transformer model outputting raw hidden states.""" |
|
|
|
|
|
def __init__(self, config: MaincoderConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
self.layers = nn.ModuleList( |
|
|
[MaincoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
|
) |
|
|
self.norm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = MaincoderRotaryEmbedding(config) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, BaseModelOutputWithPast]: |
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, |
|
|
past_seen_tokens + inputs_embeds.shape[1], |
|
|
device=inputs_embeds.device, |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
causal_mask = create_causal_mask( |
|
|
config=self.config, |
|
|
input_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
cache_position=cache_position, |
|
|
past_key_values=past_key_values, |
|
|
) |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(inputs_embeds, position_ids) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
for layer in self.layers: |
|
|
hidden_states = layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_embeddings=position_embeddings, |
|
|
past_key_values=past_key_values, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
) |
|
|
|
|
|
|
|
|
class MaincoderForCausalLM(MaincoderPreTrainedModel, GenerationMixin): |
|
|
"""Maincoder model with a causal language modeling head.""" |
|
|
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config: MaincoderConfig): |
|
|
super().__init__(config) |
|
|
self.model = MaincoderModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value: nn.Embedding): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self) -> nn.Linear: |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> Union[tuple, CausalLMOutputWithPast]: |
|
|
r""" |
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import AutoTokenizer |
|
|
>>> from modelling_maincoder import MaincoderForCausalLM |
|
|
|
|
|
>>> model = MaincoderForCausalLM.from_pretrained("maincoder/maincoder") |
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("maincoder/maincoder") |
|
|
|
|
|
>>> prompt = "def hello_world():" |
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=50) |
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0] |
|
|
```""" |
|
|
outputs = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
|
|
|
|
|
if isinstance(logits_to_keep, int) and logits_to_keep > 0: |
|
|
hidden_states = hidden_states[:, -logits_to_keep:, :] |
|
|
|
|
|
logits = self.lm_head(hidden_states) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
|
|
|
__all__ = [ |
|
|
"MaincoderConfig", |
|
|
"MaincoderPreTrainedModel", |
|
|
"MaincoderModel", |
|
|
"MaincoderForCausalLM", |
|
|
] |
|
|
|