Maincoder-1B / modelling_maincoder.py
fabian-maincode's picture
Upload folder using huggingface_hub
525736b verified
# coding=utf-8
# Copyright 2025 Maincode. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Maincoder model implementation."""
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from .configuration_maincoder import MaincoderConfig
logger = logging.get_logger(__name__)
class MaincoderRMSNorm(nn.Module):
"""RMSNorm implementation equivalent to T5LayerNorm."""
def __init__(self, hidden_size, eps=1e-5):
"""
MatildaPlusRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(hidden_size))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class MaincoderMLP(nn.Module):
"""SwiGLU-style MLP."""
def __init__(self, config: MaincoderConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size_mlp
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class MaincoderRotaryEmbedding(nn.Module):
"""Rotary Position Embedding."""
def __init__(self, config: MaincoderConfig, device=None):
super().__init__()
self.rope_type = "llama3" if config.rope_scaling is not None else "default"
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
@dynamic_rope_update
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
freqs_cis = freqs_cis * self.attention_scaling
return freqs_cis
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to query and key tensors."""
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Broadcast freqs_cis
freqs_cis = freqs_cis[:, :, None, :]
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Repeat key/value heads to match query heads for GQA."""
if n_rep == 1:
return hidden_states
batch, num_kv_heads, slen, head_dim = hidden_states.shape
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_kv_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_kv_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Eager attention implementation."""
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class MaincoderAttention(nn.Module):
"""Multi-headed attention with Grouped Query Attention (GQA) and RoPE."""
def __init__(self, config: MaincoderConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = config.head_dim
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
# QK normalization
if config.use_qk_norm:
self.q_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
batch_size, seq_len, _ = hidden_states.shape
query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_attention_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
# Apply RoPE
query_states, key_states = apply_rotary_emb(query_states, key_states, position_embeddings)
# Apply QK normalization
if hasattr(self, "q_norm"):
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
# Transpose for attention: (batch, heads, seq, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Update KV cache
if past_key_values is not None:
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Attention
attention_fn: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_fn = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_fn(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MaincoderDecoderLayer(GradientCheckpointingLayer):
"""Transformer decoder layer with pre-norm architecture."""
def __init__(self, config: MaincoderConfig, layer_idx: int):
super().__init__()
self.self_attn = MaincoderAttention(config, layer_idx)
self.feed_forward = MaincoderMLP(config)
self.input_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Feed Forward
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class MaincoderPreTrainedModel(PreTrainedModel):
"""Base class for Maincoder models."""
config_class = MaincoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MaincoderDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, MaincoderRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class MaincoderModel(MaincoderPreTrainedModel):
"""Maincoder transformer model outputting raw hidden states."""
def __init__(self, config: MaincoderConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MaincoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MaincoderRotaryEmbedding(config)
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, BaseModelOutputWithPast]:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Create causal mask
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
# Position embeddings
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
hidden_states = inputs_embeds
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=causal_mask,
position_embeddings=position_embeddings,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class MaincoderForCausalLM(MaincoderPreTrainedModel, GenerationMixin):
"""Maincoder model with a causal language modeling head."""
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MaincoderConfig):
super().__init__(config)
self.model = MaincoderModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.model.embed_tokens
def set_input_embeddings(self, value: nn.Embedding):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.lm_head = new_embeddings
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer
>>> from modelling_maincoder import MaincoderForCausalLM
>>> model = MaincoderForCausalLM.from_pretrained("maincoder/maincoder")
>>> tokenizer = AutoTokenizer.from_pretrained("maincoder/maincoder")
>>> prompt = "def hello_world():"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> generate_ids = model.generate(inputs.input_ids, max_length=50)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
```"""
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute logits for tokens we need
if isinstance(logits_to_keep, int) and logits_to_keep > 0:
hidden_states = hidden_states[:, -logits_to_keep:, :]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"MaincoderConfig",
"MaincoderPreTrainedModel",
"MaincoderModel",
"MaincoderForCausalLM",
]