checkpoints / README.md
MathildeB3's picture
End of training
82527e2 verified
metadata
library_name: peft
language:
  - fr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - base_model:adapter:openai/whisper-small
  - lora
  - transformers
metrics:
  - wer
model-index:
  - name: Whisper Small Fr - IMT Atlantique X 52 Hertz Full
    results: []

Whisper Small Fr - IMT Atlantique X 52 Hertz Full

This model is a fine-tuned version of openai/whisper-small on the FullDatabase dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6708
  • Wer: 0.3327

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.3574 0.4762 20 1.4124 0.3671
1.1555 0.9524 40 1.1674 0.3728
0.7839 1.4286 60 0.7497 0.3231
0.4459 1.9048 80 0.6860 0.3614
0.533 2.3810 100 0.6819 0.3461
0.2029 2.8571 120 0.6708 0.3327

Framework versions

  • PEFT 0.18.0
  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1