exceptions
Collection
Data and models for "Manipulating language models’ training data to study syntactic constraint learning: the case of English passivization"
•
49 items
•
Updated
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|---|---|---|---|---|
| 5.1167 | 0.1078 | 1000 | 0.2265 | 5.0316 |
| 4.5939 | 0.2156 | 2000 | 0.2701 | 4.5123 |
| 4.3174 | 0.3235 | 3000 | 0.2980 | 4.2394 |
| 4.1616 | 0.4313 | 4000 | 0.3117 | 4.0950 |
| 4.0631 | 0.5391 | 5000 | 0.3210 | 3.9943 |
| 4.0063 | 0.6469 | 6000 | 0.3278 | 3.9201 |
| 3.9296 | 0.7547 | 7000 | 0.3329 | 3.8656 |
| 3.8882 | 0.8625 | 8000 | 0.3372 | 3.8190 |
| 3.8432 | 0.9704 | 9000 | 0.3407 | 3.7808 |
| 3.7782 | 1.0782 | 10000 | 0.3441 | 3.7569 |
| 3.7405 | 1.1860 | 11000 | 0.3471 | 3.7269 |
| 3.7342 | 1.2938 | 12000 | 0.3493 | 3.7020 |
| 3.7098 | 1.4016 | 13000 | 0.3514 | 3.6816 |
| 3.7016 | 1.5094 | 14000 | 0.3536 | 3.6587 |
| 3.6781 | 1.6173 | 15000 | 0.3555 | 3.6408 |
| 3.6798 | 1.7251 | 16000 | 0.3569 | 3.6209 |
| 3.6639 | 1.8329 | 17000 | 0.3586 | 3.6067 |
| 3.6461 | 1.9407 | 18000 | 0.3602 | 3.5905 |
| 3.5609 | 2.0485 | 19000 | 0.3615 | 3.5818 |
| 3.5583 | 2.1563 | 20000 | 0.3628 | 3.5729 |
| 3.5592 | 2.2642 | 21000 | 0.3634 | 3.5644 |
| 3.5447 | 2.3720 | 22000 | 0.3647 | 3.5518 |
| 3.5527 | 2.4798 | 23000 | 0.3656 | 3.5423 |
| 3.541 | 2.5876 | 24000 | 0.3668 | 3.5317 |
| 3.5277 | 2.6954 | 25000 | 0.3674 | 3.5235 |
| 3.5395 | 2.8032 | 26000 | 0.3687 | 3.5142 |
| 3.522 | 2.9111 | 27000 | 0.3694 | 3.5048 |
| 3.4455 | 3.0189 | 28000 | 0.3705 | 3.5026 |
| 3.4399 | 3.1267 | 29000 | 0.3706 | 3.4956 |
| 3.4688 | 3.2345 | 30000 | 0.3718 | 3.4911 |
| 3.4748 | 3.3423 | 31000 | 0.3726 | 3.4835 |
| 3.4633 | 3.4501 | 32000 | 0.3733 | 3.4767 |
| 3.4541 | 3.5580 | 33000 | 0.3735 | 3.4712 |
| 3.4513 | 3.6658 | 34000 | 0.3745 | 3.4640 |
| 3.4707 | 3.7736 | 35000 | 0.3750 | 3.4572 |
| 3.4347 | 3.8814 | 36000 | 0.3755 | 3.4530 |
| 3.417 | 3.9892 | 37000 | 0.3759 | 3.4462 |
| 3.3602 | 4.0970 | 38000 | 0.3764 | 3.4484 |
| 3.384 | 4.2049 | 39000 | 0.3770 | 3.4457 |
| 3.4014 | 4.3127 | 40000 | 0.3773 | 3.4402 |
| 3.4152 | 4.4205 | 41000 | 0.3779 | 3.4369 |
| 3.3867 | 4.5283 | 42000 | 0.3787 | 3.4306 |
| 3.4083 | 4.6361 | 43000 | 0.3791 | 3.4263 |
| 3.3929 | 4.7439 | 44000 | 0.3794 | 3.4202 |
| 3.389 | 4.8518 | 45000 | 0.3803 | 3.4123 |
| 3.3876 | 4.9596 | 46000 | 0.3805 | 3.4127 |
| 3.3161 | 5.0674 | 47000 | 0.3810 | 3.4123 |
| 3.3084 | 5.1752 | 48000 | 0.3809 | 3.4124 |
| 3.329 | 5.2830 | 49000 | 0.3815 | 3.4083 |
| 3.3415 | 5.3908 | 50000 | 0.3817 | 3.4022 |
| 3.3172 | 5.4987 | 51000 | 0.3822 | 3.3990 |
| 3.3287 | 5.6065 | 52000 | 0.3826 | 3.3959 |
| 3.3407 | 5.7143 | 53000 | 0.3830 | 3.3904 |
| 3.3252 | 5.8221 | 54000 | 0.3834 | 3.3858 |
| 3.3267 | 5.9299 | 55000 | 0.3839 | 3.3821 |
| 3.2385 | 6.0377 | 56000 | 0.3840 | 3.3859 |
| 3.2695 | 6.1456 | 57000 | 0.3841 | 3.3841 |
| 3.2792 | 6.2534 | 58000 | 0.3846 | 3.3813 |
| 3.2941 | 6.3612 | 59000 | 0.3850 | 3.3767 |
| 3.2853 | 6.4690 | 60000 | 0.3855 | 3.3732 |
| 3.2766 | 6.5768 | 61000 | 0.3860 | 3.3684 |
| 3.2783 | 6.6846 | 62000 | 0.3860 | 3.3660 |
| 3.2875 | 6.7925 | 63000 | 0.3866 | 3.3614 |
| 3.3016 | 6.9003 | 64000 | 0.3870 | 3.3557 |
| 3.2097 | 7.0081 | 65000 | 0.3869 | 3.3597 |
| 3.2227 | 7.1159 | 66000 | 0.3876 | 3.3602 |
| 3.2331 | 7.2237 | 67000 | 0.3875 | 3.3562 |
| 3.2154 | 7.3315 | 68000 | 0.3880 | 3.3542 |
| 3.2493 | 7.4394 | 69000 | 0.3881 | 3.3500 |
| 3.2359 | 7.5472 | 70000 | 0.3887 | 3.3460 |
| 3.236 | 7.6550 | 71000 | 0.3892 | 3.3415 |
| 3.2325 | 7.7628 | 72000 | 0.3895 | 3.3391 |
| 3.2321 | 7.8706 | 73000 | 0.3898 | 3.3348 |
| 3.2455 | 7.9784 | 74000 | 0.3900 | 3.3332 |
| 3.1591 | 8.0863 | 75000 | 0.3900 | 3.3374 |
| 3.1871 | 8.1941 | 76000 | 0.3901 | 3.3381 |
| 3.1747 | 8.3019 | 77000 | 0.3905 | 3.3329 |
| 3.1932 | 8.4097 | 78000 | 0.3909 | 3.3302 |
| 3.1805 | 8.5175 | 79000 | 0.3911 | 3.3280 |
| 3.1777 | 8.6253 | 80000 | 0.3917 | 3.3246 |
| 3.1899 | 8.7332 | 81000 | 0.3921 | 3.3193 |
| 3.196 | 8.8410 | 82000 | 0.3924 | 3.3160 |
| 3.1743 | 8.9488 | 83000 | 0.3926 | 3.3144 |
| 3.1092 | 9.0566 | 84000 | 0.3926 | 3.3175 |
| 3.1468 | 9.1644 | 85000 | 0.3929 | 3.3152 |
| 3.1336 | 9.2722 | 86000 | 0.3930 | 3.3148 |
| 3.1193 | 9.3801 | 87000 | 0.3933 | 3.3122 |
| 3.1383 | 9.4879 | 88000 | 0.3938 | 3.3087 |
| 3.13 | 9.5957 | 89000 | 0.3938 | 3.3068 |
| 3.135 | 9.7035 | 90000 | 0.3942 | 3.3042 |
| 3.1324 | 9.8113 | 91000 | 0.3944 | 3.3028 |
| 3.1419 | 9.9191 | 92000 | 0.3946 | 3.3012 |
| 3.2895 | 10.0270 | 93000 | 3.4581 | 0.3781 |
| 3.3641 | 10.1348 | 94000 | 3.4706 | 0.3758 |
| 3.3727 | 10.2426 | 95000 | 3.4641 | 0.3759 |