exceptions
Collection
Data and models for "Manipulating language models’ training data to study syntactic constraint learning: the case of English passivization"
•
49 items
•
Updated
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 5.0697 | 0.1078 | 1000 | 5.0126 | 0.2283 |
| 4.5629 | 0.2156 | 2000 | 4.4858 | 0.2737 |
| 4.306 | 0.3235 | 3000 | 4.2274 | 0.2996 |
| 4.1513 | 0.4313 | 4000 | 4.0807 | 0.3132 |
| 4.074 | 0.5391 | 5000 | 3.9905 | 0.3217 |
| 3.961 | 0.6469 | 6000 | 3.9135 | 0.3287 |
| 3.9267 | 0.7547 | 7000 | 3.8603 | 0.3335 |
| 3.8645 | 0.8625 | 8000 | 3.8133 | 0.3380 |
| 3.8642 | 0.9704 | 9000 | 3.7759 | 0.3415 |
| 3.7643 | 1.0782 | 10000 | 3.7448 | 0.3456 |
| 3.7378 | 1.1860 | 11000 | 3.7189 | 0.3476 |
| 3.7188 | 1.2938 | 12000 | 3.6963 | 0.3497 |
| 3.7114 | 1.4016 | 13000 | 3.6745 | 0.3520 |
| 3.6925 | 1.5094 | 14000 | 3.6508 | 0.3544 |
| 3.6799 | 1.6173 | 15000 | 3.6330 | 0.3560 |
| 3.6492 | 1.7251 | 16000 | 3.6181 | 0.3577 |
| 3.6301 | 1.8329 | 17000 | 3.6005 | 0.3592 |
| 3.6432 | 1.9407 | 18000 | 3.5868 | 0.3607 |
| 3.5593 | 2.0485 | 19000 | 3.5782 | 0.3620 |
| 3.5569 | 2.1563 | 20000 | 3.5698 | 0.3631 |
| 3.5433 | 2.2642 | 21000 | 3.5570 | 0.3643 |
| 3.5588 | 2.3720 | 22000 | 3.5476 | 0.3651 |
| 3.5421 | 2.4798 | 23000 | 3.5348 | 0.3660 |
| 3.543 | 2.5876 | 24000 | 3.5261 | 0.3671 |
| 3.55 | 2.6954 | 25000 | 3.5181 | 0.3681 |
| 3.5297 | 2.8032 | 26000 | 3.5104 | 0.3688 |
| 3.5344 | 2.9111 | 27000 | 3.5017 | 0.3698 |
| 3.4229 | 3.0189 | 28000 | 3.4982 | 0.3708 |
| 3.447 | 3.1267 | 29000 | 3.4911 | 0.3713 |
| 3.4588 | 3.2345 | 30000 | 3.4855 | 0.3717 |
| 3.4444 | 3.3423 | 31000 | 3.4781 | 0.3730 |
| 3.4586 | 3.4501 | 32000 | 3.4733 | 0.3736 |
| 3.4446 | 3.5580 | 33000 | 3.4671 | 0.3741 |
| 3.4588 | 3.6658 | 34000 | 3.4610 | 0.3744 |
| 3.443 | 3.7736 | 35000 | 3.4548 | 0.3750 |
| 3.4476 | 3.8814 | 36000 | 3.4459 | 0.3759 |
| 3.4369 | 3.9892 | 37000 | 3.4423 | 0.3765 |
| 3.3761 | 4.0970 | 38000 | 3.4429 | 0.3771 |
| 3.3755 | 4.2049 | 39000 | 3.4391 | 0.3771 |
| 3.392 | 4.3127 | 40000 | 3.4352 | 0.3780 |
| 3.3874 | 4.4205 | 41000 | 3.4306 | 0.3781 |
| 3.3826 | 4.5283 | 42000 | 3.4242 | 0.3792 |
| 3.4029 | 4.6361 | 43000 | 3.4206 | 0.3795 |
| 3.3679 | 4.7439 | 44000 | 3.4136 | 0.3802 |
| 3.3935 | 4.8518 | 45000 | 3.4104 | 0.3805 |
| 3.3835 | 4.9596 | 46000 | 3.4067 | 0.3810 |
| 3.3076 | 5.0674 | 47000 | 3.4097 | 0.3811 |
| 3.3124 | 5.1752 | 48000 | 3.4069 | 0.3814 |
| 3.3104 | 5.2830 | 49000 | 3.4038 | 0.3815 |
| 3.338 | 5.3908 | 50000 | 3.3987 | 0.3825 |
| 3.3199 | 5.4987 | 51000 | 3.3963 | 0.3826 |
| 3.3414 | 5.6065 | 52000 | 3.3916 | 0.3830 |
| 3.3461 | 5.7143 | 53000 | 3.3865 | 0.3836 |
| 3.3291 | 5.8221 | 54000 | 3.3819 | 0.3836 |
| 3.3288 | 5.9299 | 55000 | 3.3764 | 0.3844 |
| 3.2608 | 6.0377 | 56000 | 3.3797 | 0.3846 |
| 3.2485 | 6.1456 | 57000 | 3.3790 | 0.3846 |
| 3.2514 | 6.2534 | 58000 | 3.3782 | 0.3850 |
| 3.2841 | 6.3612 | 59000 | 3.3745 | 0.3855 |
| 3.2865 | 6.4690 | 60000 | 3.3674 | 0.3859 |
| 3.2802 | 6.5768 | 61000 | 3.3651 | 0.3863 |
| 3.2715 | 6.6846 | 62000 | 3.3598 | 0.3868 |
| 3.2764 | 6.7925 | 63000 | 3.3570 | 0.3871 |
| 3.2928 | 6.9003 | 64000 | 3.3536 | 0.3877 |
| 3.1962 | 7.0081 | 65000 | 3.3564 | 0.3876 |
| 3.2161 | 7.1159 | 66000 | 3.3560 | 0.3879 |
| 3.2193 | 7.2237 | 67000 | 3.3529 | 0.3883 |
| 3.2234 | 7.3315 | 68000 | 3.3516 | 0.3887 |
| 3.246 | 7.4394 | 69000 | 3.3452 | 0.3887 |
| 3.2284 | 7.5472 | 70000 | 3.3431 | 0.3892 |
| 3.2263 | 7.6550 | 71000 | 3.3397 | 0.3893 |
| 3.2387 | 7.7628 | 72000 | 3.3336 | 0.3898 |
| 3.2215 | 7.8706 | 73000 | 3.3321 | 0.3903 |
| 3.233 | 7.9784 | 74000 | 3.3283 | 0.3906 |
| 3.1591 | 8.0863 | 75000 | 3.3352 | 0.3905 |
| 3.166 | 8.1941 | 76000 | 3.3316 | 0.3908 |
| 3.1778 | 8.3019 | 77000 | 3.3284 | 0.3908 |
| 3.1678 | 8.4097 | 78000 | 3.3260 | 0.3914 |
| 3.1799 | 8.5175 | 79000 | 3.3224 | 0.3917 |
| 3.1777 | 8.6253 | 80000 | 3.3197 | 0.3922 |
| 3.1924 | 8.7332 | 81000 | 3.3154 | 0.3923 |
| 3.1783 | 8.8410 | 82000 | 3.3124 | 0.3927 |
| 3.1922 | 8.9488 | 83000 | 3.3095 | 0.3930 |
| 3.1202 | 9.0566 | 84000 | 3.3132 | 0.3929 |
| 3.1228 | 9.1644 | 85000 | 3.3115 | 0.3933 |
| 3.1327 | 9.2722 | 86000 | 3.3095 | 0.3936 |
| 3.1202 | 9.3801 | 87000 | 3.3084 | 0.3938 |
| 3.1281 | 9.4879 | 88000 | 3.3049 | 0.3941 |
| 3.1445 | 9.5957 | 89000 | 3.3027 | 0.3944 |
| 3.1303 | 9.7035 | 90000 | 3.3006 | 0.3945 |
| 3.131 | 9.8113 | 91000 | 3.2987 | 0.3948 |
| 3.1055 | 9.9191 | 92000 | 3.2972 | 0.3950 |