djsull's picture
djsull/sent_classification
7db1edf verified
metadata
library_name: transformers
license: apache-2.0
base_model: skt/A.X-Encoder-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: aha_sentence_classification
    results: []

aha_sentence_classification

This model is a fine-tuned version of skt/A.X-Encoder-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8454
  • Accuracy: 0.6900
  • F1 Micro: 0.6900
  • F1 Macro: 0.6503
  • Precision Macro: 0.6078
  • Recall Macro: 0.7221

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Micro F1 Macro Precision Macro Recall Macro
0.9702 0.5949 1000 1.1520 0.5590 0.5590 0.5444 0.5142 0.6791
0.7293 1.1898 2000 1.0469 0.5992 0.5992 0.5966 0.5599 0.7238
0.7779 1.7847 3000 0.9977 0.6278 0.6278 0.5964 0.5646 0.7274
0.5545 2.3795 4000 0.9847 0.6290 0.6290 0.6208 0.5849 0.7236
0.5692 2.9744 5000 0.8454 0.6900 0.6900 0.6503 0.6078 0.7221
0.3962 3.5693 6000 1.0074 0.6488 0.6488 0.6316 0.6093 0.7081
0.1624 4.1642 7000 1.1059 0.6732 0.6732 0.6533 0.6322 0.6930
0.1816 4.7591 8000 1.1277 0.6872 0.6872 0.6513 0.6429 0.6690
0.0934 5.3540 9000 1.4084 0.6882 0.6882 0.6468 0.6380 0.6649
0.0882 5.9488 10000 1.4941 0.6918 0.6918 0.6450 0.6428 0.6606

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.7.0+cu126
  • Tokenizers 0.22.0