powercoder-3b / modeling_powercoder.py
seanmanifest's picture
Upload folder using huggingface_hub
dd72573 verified
raw
history blame
24.8 kB
from typing import Callable, Optional, Union
import torch
from torch import nn
from retention.triton import power_retention, power_retention_inference
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import (
GenericForSequenceClassification,
GenericForTokenClassification,
GradientCheckpointingLayer,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
from .configuration_powercoder import PowerCoderConfig
from .kvgs_dynamic_cache import Cache, DynamicCache
class PowerCoderMLP(nn.Module):
def __init__(self, config: PowerCoderConfig):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias)
self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias)
self.act = ACT2FN[config.hidden_act]
self.residual_dropout = config.residual_dropout
def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training)
return hidden_states
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed.to(q.dtype), k_embed.to(k.dtype)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_power_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = 2*torch.log(torch.abs( torch.matmul(query, key_states.transpose(2, 3)) * scaling + 1e-5))
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class PowerCoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: PowerCoderConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.chunk_size = config.chunk_size
self.switch_over_seq_len = config.switch_over_seq_len
self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias)
self.g_proj = nn.Linear(config.hidden_size, config.num_key_value_heads, bias=config.use_bias)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias)
self.residual_dropout = config.residual_dropout
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
padding_starts: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
interpolate_exp_amount = kwargs.get('interpolate_exp', 0)
assert 0 <= interpolate_exp_amount <= 1, f'{interpolate_exp_amount=}'
run_exp = interpolate_exp_amount > 0
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2)
gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32))
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states, gate_states, state, sum_of_keys = past_key_value.update_kv(key_states, value_states, gate_states, self.layer_idx, cache_kwargs)
if run_exp:
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
exp_attn_output, exp_attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
is_causal=True,
attention_mask=None,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
if query_states.shape[2] == 1:
key_len = key_states.shape[2]
power_attn_output, state, sum_of_keys = power_retention_inference(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
gate_states.transpose(1, 2),
initial_state=state,
sum_of_keys=sum_of_keys,
deg=2,
scale=self.scaling,
switch_over_seq_len=self.switch_over_seq_len,
)
if self.switch_over_seq_len is not None and key_len >= self.switch_over_seq_len:
past_key_value.clean_kv(self.layer_idx)
past_key_value.update_state(state, sum_of_keys, self.layer_idx, cache_kwargs)
else:
key_len = key_states.shape[2]
power_attn_output = power_retention(
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
gate_states.transpose(1, 2),
deg=2,
scale=self.scaling,
chunk_size=self.chunk_size, # enable chunked prefilling by default
)
if interpolate_exp_amount == 1:
attn_output = exp_attn_output
elif interpolate_exp_amount == 0:
attn_output = power_attn_output
else:
attn_output = interpolate_exp_amount * exp_attn_output + (1 - interpolate_exp_amount) * power_attn_output
assert attn_output.shape == (input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim),\
f'{attn_output.shape=} {(input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim)=}'
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
attn_output = nn.functional.dropout(
attn_output, p=self.residual_dropout, training=self.training
) # diff with Llama
return attn_output
class PowerCoderDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: PowerCoderConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PowerCoderAttention(config=config, layer_idx=layer_idx)
self.mlp = PowerCoderMLP(config)
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
padding_starts: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
padding_starts=padding_starts,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class PowerCoderRotaryEmbedding(nn.Module):
def __init__(self, config: PowerCoderConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class PowerCoderPreTrainedModel(PreTrainedModel):
config: PowerCoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PowerCoderDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": PowerCoderDecoderLayer,
"attentions": PowerCoderAttention,
}
@auto_docstring
class PowerCoderModel(PowerCoderPreTrainedModel):
def __init__(self, config: PowerCoderConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[PowerCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon)
self.rotary_emb = PowerCoderRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embedding_dropout = config.embedding_dropout
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# Always use our local DynamicCache implementation for compatibility with gating
if use_cache:
if past_key_values is None or not isinstance(past_key_values, Cache):
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask
# causal_mask = mask_function(
# config=self.config,
# input_embeds=inputs_embeds,
# attention_mask=attention_mask,
# cache_position=cache_position,
# past_key_values=past_key_values,
# position_ids=position_ids,
# )
padding_starts = attention_mask.argmin(-1) if attention_mask is not None else None
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(
hidden_states, p=self.embedding_dropout, training=self.training
) # main diff with Llama
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]):
hidden_states = decoder_layer(
hidden_states,
padding_starts=padding_starts,
position_ids=position_ids,
past_key_value=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
@auto_docstring
class PowerCoderForCausalLM(PowerCoderPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config, chunk_size=None, switch_over_seq_len=None):
if chunk_size is not None:
config.chunk_size = chunk_size
if switch_over_seq_len is not None:
config.switch_over_seq_len = switch_over_seq_len
super().__init__(config)
self.model = PowerCoderModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
r"""
Example:
```python
>>> from transformers import AutoTokenizer, PowerCoderForCausalLM
>>> model = PowerCoderForCausalLM.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```
Args:
input_ids (`Optional[torch.LongTensor]`, *optional*):
Indices of input sequence tokens in the vocabulary.
attention_mask (`Optional[torch.Tensor]`, *optional*):
Mask to avoid performing attention on padding token indices.
position_ids (`Optional[torch.LongTensor]`, *optional*):
Indices of positions of each input sequence tokens.
past_key_values (`Optional[Cache]`, *optional*):
Cache containing pre-computed key and value states for attention layers, used for faster inference.
If `use_cache` is True, the cache will be used and updated with new key/value states.
inputs_embeds (`Optional[torch.FloatTensor]`, *optional*):
Pre-computed input embeddings. Useful for scenarios where you want to compute embeddings separately.
labels (`Optional[torch.LongTensor]`, *optional*):
Labels for computing language modeling loss.
use_cache (`Optional[bool]`, *optional*):
If True, past key/value states are returned and can be used for future predictions.
cache_position (`Optional[torch.LongTensor]`, *optional*):
Position indices for cached key/value states when using incremental decoding.
logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0):
Number of logits to compute from the end of the sequence, or specific indices to compute.
**kwargs:
Additional arguments passed to the underlying model's forward method.
Returns:
`CausalLMOutputWithPast`: A dataclass containing:
- loss (`Optional[torch.FloatTensor]`): Language modeling loss if labels were provided.
- logits (`torch.FloatTensor`): Prediction scores for the vocabulary.
- past_key_values (`Optional[Cache]`): Updated key/value states for attention layers if use_cache=True.
- hidden_states (`Optional[Tuple[torch.FloatTensor]]`): Model's hidden states.
- attentions (`Optional[Tuple[torch.FloatTensor]]`): Attention weights if output_attentions=True.
"""
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class PowerCoderForSequenceClassification(GenericForSequenceClassification, PowerCoderPreTrainedModel):
pass
class PowerCoderForTokenClassification(GenericForTokenClassification, PowerCoderPreTrainedModel):
pass
__all__ = [
"PowerCoderForCausalLM",
"PowerCoderModel",
"PowerCoderPreTrainedModel",
"PowerCoderForSequenceClassification",
"PowerCoderForTokenClassification",
]