metadata
license: mit
datasets:
- shorecode/summary-collection-200k-rows
language:
- en
base_model:
- google/t5-efficient-tiny-nh8
library_name: transformers
tags:
- summary
- summarizer
widget:
- text: Model training
output:
url: Screenshot_20251104_204645.png
metrics:
- f1
- rouge
- extractiveness
model-index:
- name: t5-efficient-tiny-summarizer-general-purpose-v2
results:
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: f1 Score
type: f1 Score
value: 0.29
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: Faithfullness (facebook/bart-large-cnn)
type: facebook/bart-large-cnn
value: 1.71
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: Summarization Compression
type: Lighteval extractiveness
value: 7.52
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: Summarization Coverage
type: Lighteval extractiveness
value: 0.96
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: Summarization Density
type: Lighteval extractiveness
value: 8.68
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rougeL precision
type: Lighteval
value: 0.59
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rougeL recall
type: Lighteval
value: 0.31
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rougeL fmeasure
type: Lighteval
value: 0.41
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rouge1 precision
type: Lighteval
value: 0.63
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rouge1 recall
type: Lighteval
value: 0.33
- task:
type: Summarization
dataset:
name: shorecode/summary-collection-60k-rows
type: shorecode/summary-collection-60k-rows
metrics:
- name: rouge1 fmeasure
type: Lighteval
value: 0.44
This model was built to shorten text that is injected into LLM prompts to reduce API calling costs
Very high compression (7x+) meaning the text is 7 times smaller when sent to your LLM provider! Recommended kwargs:
- num_beams=2 || 3
- no_repeat_ngram_size=2
- min_length=20
- max_new_tokens=500 || as high as you can tolerate, 4x500 = 2000 characters. anything after 2000 is clipped

- Prompt
- Model training