|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from PIL import Image |
|
|
import fitz |
|
|
import torch |
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
print(f"Using device: {device}") |
|
|
|
|
|
|
|
|
|
|
|
print("Loading DeepSeek-OCR model...") |
|
|
model_path = 'deepseek-ai/DeepSeek-OCR' |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device) |
|
|
model.eval() |
|
|
print("Model loaded successfully.") |
|
|
|
|
|
def pdf_to_images(pdf_path): |
|
|
"""将PDF文件转换为PIL图像列表""" |
|
|
doc = fitz.open(pdf_path) |
|
|
images = [] |
|
|
for page_num in range(len(doc)): |
|
|
page = doc.load_page(page_num) |
|
|
pix = page.get_pixmap(dpi=200) |
|
|
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) |
|
|
images.append(img) |
|
|
doc.close() |
|
|
return images |
|
|
|
|
|
def ocr_process(pdf_file): |
|
|
"""处理上传的PDF文件并执行OCR""" |
|
|
if pdf_file is None: |
|
|
return "请先上传一个PDF文件" |
|
|
|
|
|
pdf_path = pdf_file.name |
|
|
try: |
|
|
images = pdf_to_images(pdf_path) |
|
|
|
|
|
full_text = "" |
|
|
|
|
|
yield "PDF处理完成,共 {} 页。开始逐页识别,请耐心等待...".format(len(images)) |
|
|
|
|
|
for i, pil_img in enumerate(images): |
|
|
yield f"正在识别第 {i+1}/{len(images)} 页..." |
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": [{"type": "image", "image": pil_img}, {"type": "text", "text": "recognize characters in this image"}]} |
|
|
] |
|
|
|
|
|
text_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device) |
|
|
|
|
|
outputs = model.generate(text_input, max_new_tokens=2048, do_sample=False) |
|
|
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
cleaned_text = result_text.split("recognize characters in this image")[-1].strip() |
|
|
|
|
|
full_text += f"--- Page {i+1} ---\n{cleaned_text}\n\n" |
|
|
|
|
|
yield full_text |
|
|
|
|
|
except Exception as e: |
|
|
yield f"处理时发生错误: {str(e)}" |
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=ocr_process, |
|
|
inputs=gr.File(label="上传PDF文件", file_types=[".pdf"]), |
|
|
outputs=gr.Textbox(label="识别结果 (DeepSeek-OCR)", lines=20, show_copy_button=True), |
|
|
title="DeepSeek OCR PDF识别 (CPU运行)", |
|
|
description="上传PDF文件进行识别。警告:此模型在免费CPU服务器上运行会【极其缓慢】,处理多页或复杂PDF极有可能因超时而失败。" |
|
|
) |
|
|
|
|
|
|
|
|
iface.launch() |