deepspeek / app.py
1oscon's picture
Update app.py
3d7c669 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import fitz # PyMuPDF
import torch
# 指定设备 (在免费Space上,这里会自动选择 'cpu')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# 加载模型和分词器
# 首次加载会下载模型,可能需要很长时间
print("Loading DeepSeek-OCR model...")
model_path = 'deepseek-ai/DeepSeek-OCR'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(device)
model.eval()
print("Model loaded successfully.")
def pdf_to_images(pdf_path):
"""将PDF文件转换为PIL图像列表"""
doc = fitz.open(pdf_path)
images = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
pix = page.get_pixmap(dpi=200) # 适当降低dpi以减少内存消耗
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
doc.close()
return images
def ocr_process(pdf_file):
"""处理上传的PDF文件并执行OCR"""
if pdf_file is None:
return "请先上传一个PDF文件"
pdf_path = pdf_file.name
try:
images = pdf_to_images(pdf_path)
full_text = ""
# 提示用户进程开始
yield "PDF处理完成,共 {} 页。开始逐页识别,请耐心等待...".format(len(images))
for i, pil_img in enumerate(images):
yield f"正在识别第 {i+1}/{len(images)} 页..."
messages = [
{"role": "user", "content": [{"type": "image", "image": pil_img}, {"type": "text", "text": "recognize characters in this image"}]}
]
text_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device)
outputs = model.generate(text_input, max_new_tokens=2048, do_sample=False)
result_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# 简单的后处理,移除提示词部分
cleaned_text = result_text.split("recognize characters in this image")[-1].strip()
full_text += f"--- Page {i+1} ---\n{cleaned_text}\n\n"
yield full_text
except Exception as e:
yield f"处理时发生错误: {str(e)}"
# 创建Gradio界面
iface = gr.Interface(
fn=ocr_process,
inputs=gr.File(label="上传PDF文件", file_types=[".pdf"]),
outputs=gr.Textbox(label="识别结果 (DeepSeek-OCR)", lines=20, show_copy_button=True),
title="DeepSeek OCR PDF识别 (CPU运行)",
description="上传PDF文件进行识别。警告:此模型在免费CPU服务器上运行会【极其缓慢】,处理多页或复杂PDF极有可能因超时而失败。"
)
# 启动应用
iface.launch()